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Abstract. Despite the fact that many RNA-Seq experiments do not
use biological replicates, most of the existing differential gene expres-
sion analysis for RNA-Seq data are designed to work with replicates. We
present a novel method for differential gene expression analysis based on
bootstrapping. We also discuss the use of different normalization meth-
ods with Fisher’s exact test. We compare the methods we present, with
existing methods, on real RNA-Seq benchmarking data. Our comparison
shows that bootstrapping outperforms other methods in most cases.

1 Introduction

RNA-Seq is the new standard for the analysis of differential gene expression [9]
[8] [14]. For this purpose, RNA-Seq produces gene expression profiles with much
smaller technical variance [3] than traditional microarray technologies. However,
simply using the raw fold change of the expression levels of a gene across two
samples, as a measure of differential expression, can still be unreliable, because it
does not account for the uncertainty in the gene expression estimation. Therefore,
the need for using statistical methods arises. Despite the fact that most RNA-
Seq data do not have biological replicates [2], most reliable differential expression
analysis approaches are designed for data with replicates. EdgeR[11] and DESeq
[1], are both statistical packages which work with replicates, and compute exact
test based on negative binomial distribution. Recently, Feng el al. presented
GFOLD [5], a generalized fold change algorithm which produces biologically
meaningful rankings of differentially expressed genes from RNA-Seq data. They
show that GFOLD outperforms methods designed to work with replicates, when
used for single replicate datasets.
In this work, we present a novel method for differential expression analysis based
on bootstrapping, and a comparison for a number of methods including different
normalization methods that can be used with Fisher’s exact test. The comparison
includes GFOLD as well as cuffdiff, which is part of the widely used cufflinks
package [12]. We assess the accuracy of these methods using the RNA-Seq data
generated for MAQC [7] samples using two different technologies (Illumina and
ION Torrent). The comparisons are done for different fold change thresholds.
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2 Methods

Here we discuss two statistical methods for differential gene expression analysis
from RNA-Seq data. The first method is a novel method that uses bootstrapping
to calculate the support of a fold change for the expression of a gene across two
samples. The second is Fisher’s exact test which was suggested by Bullard et
al. [3]. We we look at different normalization methods to be used with Fisher’s
exact test, including using synthetic RNA spike-in controls.

2.1 Bootstrapping

We use bootstrapping to calculate the fold change for the expression of a gene
between two datasets. Given two RNA-Seq read sets, a and b, we generate 200
random samples with replacement for the reads in a, and similarly for b, where
the size of each sample equals the minimum of the total number of reads in a
and b. In each resampling iteration, we use the alignments of the set of selected
reads to calculate gene expression levels. For efficiency, we map the reads in a
and b once, and we extract the alignments of the sampled reads in each iteration.
For gene expression estimation, we use IsoEM [10] to calculate the Fragment per
kilobase of gene length per Million reads (FPKM). IsoEM is also run on the
complete sets of read alignments for a and b and the estimated FPKM values
are used to determine the direction of over expression Dg, if any, for each gene,
for a specific fold change threshold. To make a differential expression call of a
gene g, 200 fold changes are calculated for g by randomly select FPKMai

(g) and
FPKMbi(g) for i = 1..200 from the FPKM estimates calculated in the boot-
strapping iterations. For a given fold change, x, we calculate the the percentage
p of fold changes of g ≥ x, where the direction of over expression of these fold
cahnges agrees with Dg. A gene g is called differentially expressed if p ≥ 50%.

2.2 Fisher’s exact test

Fisher’s exact test is a statistical significance test for categorical data which
measures the association between two variables. The data is classified in a 2x2
contingency table according to the two variables of interest. We use Fisher’s
exact test to measure the statistical significance of change in gene expressions
between two samples a and b by setting the two values in the first row of table
to the estimated number of reads mapped per kilobase of gene length (calcu-
lated from IsoEM estimated FPKM values) in samples a and b. The values in
the second row of the contingency table depend on the normalization method
used. We compare three normalization methods. The first one is total read nor-
malization, where the total number of mapped reads in samples a and b are
used in the second row. The second is normalization by a housekeeping gene.
In this case, the estimated number of reads mapped per kilobase of housekeep-
ing gene length in each sample is used. We also test normalization by External
RNA Controls Consortium (ERCC) RNA spike-in controls. FPKMs of ERCCs
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are aggregated together (similar to aggregating the FPKMs of different tran-
scripts of a gene), and the estimated number of reads mapped per kilobase of
ERCC are calculated from the resulting FPKM value and used for normaliza-
tion. The calculated p-value which measures the significance of deviation from
the null-hypothesis, namely the gene being not differentially expressed, is exactly
measured by calculating the hypergeometric probability of the numbers given in
the contingency table or more extreme differences, while keeping the marginal
sums in the contingency table unchanged. We adjust the resulting p-values for
the set of genes being tested for 5% false discovery rate (FDR).

3 Experimental Results

We conducted experiments on RNA-Seq data generated from two commercially
available reference RNA samples that have been well-characterized by quantita-
tive real time PCR (qRT-PCR) as part of the MicroArray Quality Control Con-
sortium (MAQC) [7]; namely an Ambion Human Brain Reference RNA, Catalog
# 6050), henceforth referred to as HBRR and a Stratagene Universal Human
Reference RNA (Catalog # 740000), henceforth referred to as UHRR. To assess
accuracy, DE calls obtained from RNA-Seq data were compared against those
obtained from TaqMan qRT-PCR measurements (GEO accession GPL4097) col-
lected as part of the MAQC project. Each TaqMan Assay was run in four repli-
cates for each measured gene. POLR2A (ENSEMBL id ENSG00000181222) was
chosen as the reference gene and each replicate CT was subtracted from the
average POLR2A CT to give the log2 difference (delta CT). For delta CT cal-
culations, a CT value of 35 was used for any replicate that had CT >35. The
normalized expression value of a gene g would be: 2(CTPOLR2A−CTg). We filtered
out genes that: (1) were not detected present in two or more replicates in each
samples or (2) had a standard deviation higher than 25% for the four Taq-
Man values in each of the two samples. Of the resulting subset, we used in the
comparison genes whose TaqMan probe ids mapped to Ensemble gene ids (686
genes).

True

Over-Expressed Non-Differential Under-Expressed
Predicted (TOE) (TND) (TUE)

Over-Expressed (POE) TPOE

Non-Differential (PND) TPND

Under-Expressed (PUE) TPUE

Table 1: Confusion Matrix for Differential Expression

For the ground truth, a gene was considered differentially expressed if the fold
change in the average normalized TaqMan expression levels between the two
samples is greater than a set threshold with the p-value for an unpaired two-
tailed T-test (adjusted for 5% FDR) is less than 0.05. We ran the experiment
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for fold change thresholds of 1, 1.5, and 2. For each RNA-Seq differential expres-
sion method being evaluated, genes were classified according to the differential
expression confusion matrix detailed in Table 1. Methods were assessed using
sensitivity, positive predictive value (PPV), F-score, which is the harmonic mean
of sensitivity and PPV, and accuracy, defined as follows:

Sensitivity = (TPOE+TPUE)
(TOE+TUE) PPV = (TPOE+TPUE)

(POE+PUE)

Accuracy = (TPOE+TPND+TPUE)
(TOE+TND+TUE) F -score = 2 × TPR×SPC

TPR+SPC

We compared different methods on Illumina and ION Torrent datasets. For
Illumina, we downloaded HBBR SRX003926 and UHHR SRX003927 datasets
[13] from NCBI Short Read Archive. Reads were mapped to hg19 Ensembl 63
transcript library, using bowtie v0.12.7.0 [6]. Mapping resulted in 6.8 and 5.8
million mapped reads, for HBBR and UHHR datasets respectively. We used
this dataset to compare cuffdiff, GFOLD, and Fisher’s exact test, using both
total and housekeeping gene (POLR2A) normalization, and bootstrapping. We
used cuffdiff v2.0.1 with default parameters and GFOLD v1.0.7 with default
parameters and fold change significant cuttof of 0.05. Number of mapped reads
per kilobase of gene length used in Fisher’s exact test calculation are based on
IsoEM FPKMs.
For testing on ION-Torrent, we merged five UHRR (DID-144-283, GOG-140-
284, POZ-125-268, POZ-126-269, and POZ-127-270) together and five HBRR
together (DID-143-282, GOG-139-281, LUC-140-265, LUC-141-267, and POZ-
124-266). Reads were mapped to hg19 Ensembl 64 transcript library using tmap
v2.3.2. The number of mapped reads were 5.51 and 6.6 million reads, for HBRR
and UHHR respectively. For this dataset, we compared three different normaliza-
tion methods for Fisher’s exact test; namely total normalization, housekeeping
gene (POLR2A) normalization, and normalization using ERCCs [4] which were
spiked in these RNA samples. Bootstrapping and GFOLD were included in the
comparison. We did not include cuffdiff in this comparison due the big gap in
performance it showed, compared to other methods on the Illumina dataset.
Table 2 shows the results obtained from the Illumina dataset from fold change
1, 1.5 and 2. Table 3 shows the results obtained from the ION Torrent dataset
for the same fold changes. The best performing method for each statistic, within
a fold change, is highlighted in bold. Comparisons show that bootstrapping out-
performs other methods in most cases, specially at a lower fold change threshold.
Fisher exact tests present comparable results to other methods. Total count not-
malization gives the beat results for Fisher’s exact test at fold change 1; however
this changes in favor of housekeeping gene normalization, compared to both total
and ERCC normalization.
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Fold Change Method Accuracy % Sensitivity % PPV % F-Score %

1

FishersTotal 70.41% 70.79% 91.24% 79.72%
FishersHousekeeping 65.60% 65.22% 95.05% 77.36%
GFOLD 78.13% 80.06% 92.67% 85.90%
Cuffdiff 11.37% 6.96% 100.00% 13.01%
Bootstrapping 82.22% 87.17% 83.06% 85.07%

1.5

FishersTotal 74.05% 78.20% 84.85% 81.39%
FishersHousekeeping 76.68% 73.61% 93.67% 82.44%
GFOLD 79.15% 79.35% 90.41% 84.52

¯
%

Cuffdiff 28.43% 8.60% 100.00% 15.85%
Bootstrapping 79.74% 87.76% 84.38% 86.04%

2

FishersTotal 78.43% 81.86% 82.44% 82.15%
FishersHousekeeping 81.20% 80.00% 88.21% 83.90%
GFOLD 82.94% 78.84% 92.37% 85.07%
Cuffdiff 40.96% 10.47% 100.00% 18.95%
Bootstrapping 80.76% 86.74% 82.71% 84.68%

Table 2: Accuracy, sensitivity, PPV and F-Score in % for Illumina dataset and Fold-
Change = 1, 1.5, and 2

Fold Change Method Accuracy % Sensitivity % PPV % F-Score %

1

FisherTotal 71.68% 72.76% 90.56% 80.69%
FisherHousekeeping 67.15% 66.87% 94.74% 78.40%
FisherERCC 71.39% 72.45% 88.97% 79.86%
GFOLD 75.77% 77.55% 90.43% 83.50%
Bootstrapping 82.19% 86.84% 82.87% 84.81%

1.5

FisherTotal 74.16% 78.39% 85.06% 81.59%
FisherHousekeeping 76.06% 73.23% 92.96% 81.93%
FisherERCC 74.31% 78.59% 85.45% 81.87%
GFOLD 75.47% 77.63% 87.88% 82.44%
Bootstrapping 77.81% 85.28% 83.83% 84.55%

2

FisherTotal 79.71% 83.02% 84.00% 83.51%
FisherHousekeeping 81.75% 80.70% 88.75% 84.53%
FisherERCC 79.42% 82.56% 84.12% 83.33%
GFOLD 80.58% 76.74% 90.66% 83.12%
Bootstrapping 80.88% 86.05% 83.33% 84.67%

Table 3: Accuracy, sensitivity, PPV and F-Score in % for Ion Torrent dataset and
Fold-Change = 1, 1.5, and 2



6 Sahar Al Seesi, Yvette Temate Tiagueu, Alex Zelikovsky, and Ion Măndoiu
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