CSE3810/CSE6800: Computational Genomics – Spring 2022

Lecture:
M/W/F 2:30-3:20PM, E2 322
Class meetings through Jan. 29 will be held by videoconferencing, see Moodle for access links.

Instructor:
Ion Mândoiu
ion@engr.uconn.edu
Office Hours:
M/W/Fr 11:30am–12:30pm
ITE 261 or by videoconferencing at https://snp.engr.uconn.edu/b/ion/

Course Description: Started in 1995 by the completion of the first genome sequence of a free-living organism, *H. influenzae*, the genomic era has led to thousands of complete genome sequences deposited in public databases and many more genome projects at various stages of completion. The large-scale availability of genome data is revolutionizing biological and medical research, with data-driven computational approaches taking a central role. This course covers fundamental computational methods for genomic data analysis, with a main emphasis on statistical methods and current applications in genomics and genetic epidemiology.

Prerequisites: Undergraduate-level courses in biology, programming, and statistics.

Tentative list of topics to be covered: Basic probability theory and statistics; statistical modeling of biological sequences; EM and Gibbs sampling algorithms for DNA motif discovery; Markov chains; profile HMMs for representing sequence families; models of DNA and protein evolution; likelihood methods in phylogenetics; bootstrapping; basic principles of population genetics; genotype phasing and haplotype frequency estimation; computation of Mendelian likelihoods; Elston-Stewart and Lander-Green algorithms; admixture mapping; association studies; next-generation sequencing data analysis. The list of topics may change according to progress and student interest.

Textbooks: There is no required textbook for this course. Most of the covered material appears in the following optional books:

Grade breakdown: Grading will be based on in-class and online quizzes given throughout the semester, theoretical homework assignments and programming assignments reinforcing the material covered in lectures, and a final project, according to the following breakdown:
Assignments and grading:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes</td>
<td>10%</td>
</tr>
<tr>
<td>Theoretical homeworks</td>
<td>20%</td>
</tr>
<tr>
<td>Programming assignments</td>
<td>30%</td>
</tr>
<tr>
<td>Final project</td>
<td>40%</td>
</tr>
</tbody>
</table>

Assignment submission: Solutions for theoretical homework assignments and deliverables for the final project must be submitted in electronic format via Moodle (see below). Programming assignments must be submitted electronically via the Rosalind site at rosalind.info. Rosalind is a repository of intellectually stimulating problems of varying difficulty that are extracted from real challenges of molecular biology. Solutions can be prepared using any high-level programming language. You will be asked to process a dataset generated by Rosalind on your own computer and then upload or copy-paste the solution to Rosalind along with your source code. Each submitted solution is automatically checked for correctness, allowing you to fix potential problems before the due date.

Late policy: In-class quizzes are due at the end of the class meeting. All other assignments are due by midnight on the specified due date. For theoretical homeworks and programming assignments, late submissions are allowed for up to three days with a 10% penalty for each late day. Assignments that are more than three days late and make-up quizzes will not be allowed, however, to accommodate unforeseen circumstances that may prevent timely submission, the lowest quiz, homework assignment, and programming assignment scores will be dropped from the overall grade calculation.

Final project: The final project will give you the opportunity to study a computational genomics problem in more depth. You are encouraged to devise your own final project topic; suitable topics include surveys of computational genomics topics not covered in the lectures, design and implementation of novel algorithms, theoretical analyses, and empirical evaluation of existing methods. Project requirements will include submitting 2-3 intermediate progress reports and a written final report of 15-20 pages. You will also be required to give a short presentation on your project at the end of the semester. Although working individually is acceptable, completing the final project in teams of 2-3 students is encouraged.

Moodle site: We will use a course website hosted using Moodle at https://edx.engr.uconn.edu/. Please check this site regularly to access assignments, grades, and course materials including lecture notes, videos, handouts, etc. The Moodle site also includes a discussion forum to ask class-related questions and communicate with the instructor and your peers. Please observe basic etiquette by keeping your postings polite, concise, and on-topic. Appropriate questions are general questions about the covered material and clarifications on the assignments. For questions that are specific to your own work, you should contact the instructor directly.

Academic integrity: You are expected to adhere to the highest standards of academic integrity. For homework assignments and programming projects, you may discuss ideas and concepts with others, but must not share written solutions or code. All submitted solutions must be your own work. Submitting solutions from various web sources as your own is considered academic misconduct and will be sanctioned according to the University’s Academic Integrity Policy.

Students with disabilities: If you have a documented disability for which you are or may be requesting an accommodation, you are encouraged to contact the instructor and the Center for Students with Disabilities or the University Program for College Students with Learning Disabilities as soon as possible to better ensure that such accommodations are implemented in a timely fashion.