
CSE 450: Translation of Programming Languages

Lecture 3: Using Lex

Before we get going…
• Remember: Project 1 is due Tuesday, midnight.

– Ask questions if anything confuses you…
– Stay after class if you still need group partners…

• The Textbooks…
– I will associate each project with book sections.
– Project 1:

• Lex & Yacc, chapters 1 and 2
• Compilers, chapter 1 (an overview of compilers), 2.6 (a

hand-written lexer), 3.1 (details on the role of a lexer),
and 3.5 (an introduction to ‘lex’)

Problems for you
Given the regular expressions:

r1 = 0 (10)* 1+
r2 = (01)+ 0?

1. Find a string corresponding to r1 but not r2.
2. Find a string corresponding to r2 but not r1.
3. Find a string corresponding to both r1 and r2.
4. Find a string corresponding to neither r1 nor r2.

Implementation

A lexical analyzer must be able to do three things:

1. Remove all whitespace and comments.

2. Identify tokens within a string.

3. Return the lexeme of a found token, as
well as the line number it was found on.

How do we go about implementing this?

General Regular Expressions
Lets assume that we have n different tokens. We must
also have n regular expressions. Call them R1 … Rn.

Now define R = R1 | R2 | … | Rn.

All lexemes will be found by R. Any lexeme found by
R will will also be found by at least one of R1 … Rn.

Technically, we need to test all possible endpoints for
lexemes beginning from the start of the input stream, but
in practice we can typically determine when no further
results are possible.

Whitespace and Error Handling
How do we handle whitespace in the input stream? And
what if ‘R’ does not match anything in the input string?

We can add false tokens. For whitespace, this is easy:
Whitespace = {‘ ’ | ‘\t’ | ‘\n’ }

Do not do anything with the token when its found.

For an error, add a new token Error. How can this catch
everything, but is only used as a last resort?

Error = .
R = Number | Keyword | Type | Identifier | … | Error

Why Lex and Yacc?

In structured programming, there are two tasks
that occur over and over:

Dividing input into meaningful units

and

Discovering the relationship among those
units.

These two operations turn out to be easy to
automate.

Lex and Yacc

Lex reads in a collection of regular expressions,
and uses it to write a C or C++ program that will
perform lexical analysis. This program is almost
always faster than one you can write by hand.

Yacc reads in the output from lex and parses it
using its own set of regular expression rules.
This is almost always slower than a hand written
parser, but much faster to implement. Yacc
stands for “Yet Another Compiler Compiler”.

Using Flex

The freeware versions of lex and yacc are called
“flex” and “bison”.

Lex and Flex are both already installed on the
Sparcs.

On Windows, you must download Flex from the
course web page. Once installed on Windows,
you need to run Flex on the command line.

Running Flex

First, you must write your flex configuration file.
Lets call it mylang.lex

To run flex under windows, type:
flex.exe -omylang.cpp mylang.lex

This will construct the C++ source code for this
lexical analyzer. To compile it, load it into
visual studio, or else under cygwin type:

gcc -omylang mylang.cpp -ll

Running Flex

Under UNIX, this is a similar process:

flex -omylang.cpp mylang.lex

and

gcc -o mylang mylang.cpp -ll

In either OS, you will now have the executable
for your lexical analyzer.

The Simplest lex Program

In lex, you provide a set of regular expressions
and the action that should be taken with each.

For example:

 %%
 .|\n ECHO;
 %%
 main() { yylex(); }

Is the simplest lex program. What does it do?

A slightly more complex program
%{
/* This program recognizes days. */
using namespace std;
#include <iostream>
%}
%%
[\t]+ /* Ignore Whitespace */;
Monday|Tuesday|Wednesday|Thursday|Friday|
Saturday|Sunday
 { cout << yytext << " is a day."; }
[a-zA-Z]+
 { cout << yytext << " is not a day."; }
%%
main() { yylex(); }

A tiny bit more…
%{
/* This program categorizes days. */
using namespace std;
#include <iostream>
%}
%%
[\t]+ /* Ignore Whitespace */;
Monday|Tuesday|Wednesday|Thursday|Friday
 { cout << yytext << " is a week day."; }
Saturday|Sunday
 { cout << yytext << " is a weekend."; }
[a-zA-Z]+
 { cout << yytext << " is not a day."; }
%%
main() { yylex(); }

Structure of a lex program
Notice that all of the lex programs seem to have three
sections, separated by a pair of percent signs “%%”.

Section one is the definition section. Here we
introduce any code that we want at the top of the C
program. All C code should be inside “%{” and “%}”.

Section two is the rules section. Here we link patterns
with the action that they should trigger.

Section three is the user sub-routines section. Lex will
copy these sub-routines after the code it generates.

Definition Section
The first section of a lex program is copied at the start
of generated code. In our example this consisted of:

%{
/* This program categorizes days. */
using namespace std;
#include <iostream>
%}

This is for comments, include statements, C-function
pre-declarations, and can be used to setup some aspects
of lex for future sections.

Rules Section
The rules section links patterns to actions.

[\t]+ /* Ignore Whitespace */;
Monday|Tuesday|Wednesday|Thursday|Friday
 { cout << yytext << " is a week day."; }
Saturday|Sunday
 { cout << yytext << " is a weekend."; }
[a-zA-Z]+
 { cout << yytext << " is not a day."; }

Lex has a full regular expression implementation to use
in your patterns. Actions can be anything from printing
something out to calling a C function of yours.

User Sub-routines Section

The user sub-routines section is for any additional C or
C++ code that you want to include. The only required
line is:

main() { yylex(); }

This is the main function for the resulting program. Lex
builds the yylex() function that is called, and will do all
of the work for you.

Other functions here can be called from the rules
section when certain keywords are found.

Designing Patterns

Designing the proper patterns in lex can be very tricky,
but you are provided with a broad range of options for
your regular expressions.

. A dot will match any single character except a
newline.

*,+ Star and plus used to match zero/one or more of
the preceding expressions.

? Matches zero or one copy of the preceding
expression.

Designing Patterns (2)

| A logical ‘or’ statement - matches either the
pattern before it, or the pattern after.

^ Matches the very beginning of a line.

$ Matches the end of a line.

/ Matches the preceding regular expression, but
only if followed by the subsequent expression.

Designing Patterns (3)

[] Brackets are used to denote a character class,
which matches any single character within the brackets.
If the first character is a ‘^’, this negates the brackets
causing them to match any character except those listed.
The ‘-’ can be used in a set of brackets to denote a
range. C escape sequences must use a ‘\’.

“ ” Match everything within the quotes literally -
don’t use any special meanings for characters.

() Group everything in the parentheses as a single
unit for the rest of the expression.

Example Patterns

[0-9]
A single digit.

[0-9]+
An integer.

[0-9]+(\.[0-9]+)?
An integer or floating point number.

[+-]?[0-9]+(\.[0-9]+)?([eE][+-]?[0-9]+)?
Integer, floating point, or scientific notation.

Example Number Identification
%{
 using namespace std;
 #include <iostream>
%}
%%
[\t]+ /* Ignore Whitespace */;

[+-]?[0-9]+(\.[0-9]+)?([eE][+-]?[0-9]+)?
{ cout << yytext << " :number" << endl; }

[a-zA-Z]+
{ cout << yytext << " :NOT number" << endl; }
%%
main() { yylex(); }

Tracking line numbers
%{
 using namespace std;
 #include <iostream>
 int line_num = 1;
%}
%%
[\t]+ /* Ignore Whitespace */;

\n { line_num++; }

[+-]?[0-9]+(\.[0-9]+)?([eE][+-]?[0-9]+)?
{ cout <<line_num<<" : " << yytext << endl; }
%%
main() { yylex(); }

More patterns…

What regular expression can we use to detect
comments?

#.*

What about literal strings?

Does this work? \".*\"

What about: \"[^"]*\"

We need to use: \"[^"\n]*\"

Counting Words
%{
#include <iostream>
using namespace std;
int char_count = 0, word_count = 0, line_count = 0;
}%
word [^ \t\n]+
eol \n
%%
{word} { word_count++ ; char_count += yyleng; }
{eol} { char_count++; line_count++; }
. char_count++;
%%
main() {

yylex();
cout << line_count << " " << word_count << " "

 << char_count << endl;
}

Counting Words in a file…
What if we want to be able to count words in a file?

main(int argc, char * argv[])
{
 if (argc > 1) {
 FILE *file = fopen(argv[1], "r");

if (!file) {
 cerr << "Error opening " << argv[1] << endl;
 exit(1);
}
yyin = file;

 }
 yylex();
 cout << line_count << " " << word_count << " "
 << char_count << endl;
 return 0;
}

Problems for you
Design a regular expression that will identify all
IP addresses, such as 10.0.0.1 or 72.14.207.99 .

Design a regular expression that will find all
lines with a capital ‘A’, not in the first or last
position.

Write a regular expression for people names that
is triggered by honorifics (Mr, Ms, Senator, etc).

