University of Connecticut
Electrical and Computer Engineering

ECE 300: VLSI Design Verification and Testing
(Instructor: Mohammad Tehranipoor)

SYNOPSYS
A Quick Tool Setup for Synthesis& Test

DISCLAIMER: The following steps aim at your setting SYNOPSYS toolset and running a sample VHDL program. SYN-
OPSYS is a large commercial CAD tool suite with many additional options that are not explained here. What we explain
here is the minimum to run few tools. Nothing is guaranteed here. With this new version of SYNOPSYS that we installed,
there might be problems in this document and some commands may not work exactly as explained. Proceed cautiously and
use it at your own risk. | encourage you to assign enough time to familiarize yourself with this tool to be able to use it
efficiently. Please report problems, corrections and suggestions about this document to tehrani@engr.uconn.edu.

I. Setup

Most of the CAD tools, including SYNOPSYS, are accessible in various labs with UNIX/Linux workstations in ITE building.
Many of these tools, including SYNOPSYS, provide shell commands to allow user run them without graphic user interface. This
means that you can use SSH to one of these machines remotely and run them without GUI.

« You need to be familiar with the basic UNIX commands and one UNIX text editor (VI, EMACS, GVIM, EDIT, etc.)

« Inorderto run CAD tools in your UConn Engr UNIX account, make sure that your environment variables are set correctly:

— For csh or tcsh users add the following line at the end of your .login file. Remember that in UNIX the files whose names
start with a “.” (e.g. .login) are hidden, to view them type “Is -a”.
source /apps/ecs-apps/software/synopsys/etc/cshrc.synopsys
— For bash users add the following line at the end of your .bash_profile file.
source /apps/ecs-apps/software/synopsys/etc/bashrc.synopsys
You need to logout and login again, or do one of the following:
source .login OR source .bash_profile

« The Synopsys On-line Documentation can be accessed with the command $sold from the command prompt.

« Make a directory in your home directory. For example, SYNOPSYS. Note that “~ " refers to your root directory.
mkdir ~ /SYNOPSYS

« Within this directory you should have a directory called WORK. This directory is sometimes used by Synopsys tools to hold
temporary values.
mkdir ~/SYNOPSYS/WORK

« The Synopsys tool requires a shell setup file " /SYNOPSYS/.synopsys_dc.setup to run dc_shell properly.

/* __ */
/* Setup file to point to appropriate symbols */
/* and synthesis libraries. */
/* __ */

company = "University of Connecticut" ;
designer = "First_name Last _name';
define_design_lib WORK -path ./WORK

search_path = {. /apps/ecs-apps/software/synopsys/etc} + search_path
link_library = {GSCLib_3.0.db};

target_library = {GSCLib_3.0.db};

symbol_library={class.sdb generic.sdb};
vhdlout_use_packages={1EEE._std_logic_1164};
vhdlout_write_components="false";

plot_command = "lpr -Pljsol”

« The Synopsys tool also requires a shell setup file ” /SYNOPSY S/.synopsys_vss.setup to run simulator properly.

/* __ */
/* Setup File to define default data. */
/* __ */
WORK > DEFAULT

DEFAULT : ./WORK

TIMEBASE = ns

Il. Preparation for Testing
A. HDL Netlist Requirements

Designs provided in VHDL or Verilog format.
Example

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY example IS

PORT(A, B, C, D, E: IN std_logic;
F: OUT std_logic);

END;

ARCHITECTURE rtl OF example IS
SIGNAL w, X, y, z: std_logic;
BEGIN

w <= a AND b;

X <= ¢ OR d;

y <= NOT e;

z <= w NOR Xx;

f <= y NAND z;

END;

—-OR-
Use the ¢17 Verilog benchmark from http://www.fm.vslib.cz/ kes/asic/iscas/
1 <shell prompt> dc_shell-t
2 Read the HDL file in DFT Compiler.
3 Map and optimize to target library specified in .synopsys_dc.setup (GSCLib_3.0.db)
3 After synthesis save the design in Verilog format.
4 Save it as example_st.v.
This will save your design in complete optimized structural model mapped to the target library.

B. TetraMAX Invocation

<shell prompt> tmax
This invokes the Graphical User Interface (GUI) for TetraMAX shown in Figure 1.

= TetraMAX

Eile Edit View [Netlist Bules 3Scan Primitives Faulls Patterns Buses Constraints Loops Run Report Help

]

crarte | setveg | newis | i | onc |suwary| ateo [conpress| witerm | sm [rmtsi | sy [ongose| ea

f!**-!(***-!(***-!(***-!(*-!(*-!(********************i.--.l-*-!(***-!(*-!(*-!(*-.l-*-!(**********************;f

OPEM I 7 £
| /7]

TetraMAX (TH)

FRETO ~ i
" Version T-2002. 09 £

2 ') 32-bit wirtual address space £
’f Copyright (c) 1996-2002 by Synopsys. Inc. £

LI ST & ALL RIGHTS RESERVED Ifa
S— 7
CMRESETN // 7
s====== // This program is proprietary and confidential information of Synopsys, Inc. //
CATUEEY /f and may be used and disclosed only as authorized in a license agreement £
/f controlling such use and disclosure. i

i i

i!***;f

Executing startup file " /home/cad/synopsys/tx/admin/setup/tmamx. rc".
| BUILD:

+] Submit| Build>|DRC>| 1051 |
Feady B |Pin Data: None |Lines: 17 | [MUM
Figurel. TetraMAX startup window.

C. Read Library Models

You can read the library models using the Read Netlist dialog box. Click the Netlist button in the command toolbar at the top of
the TetraMAX main window.

4

1 Copy the file containing the verilog models of the components “GSCLib_3.0.v’ into your working directory. It can be
found in the path */apps/ecs-apps/software/synopsys/etc/.

2 Click Netlist button in the command toolbar.

3 Select the GSCLib_3.0.v file.

4 Check Libary modules.

5 Click RUN.

D. Read HDL File
You can read the netlist using the Read Netlist dialog box, or you can enter the read netlist command from the command line.
1 Select the file, example_st.v
2 Click RUN.
The following shows the read netlist command result.

BUILD> read netlist ~/SYNOPSYS/tmax/example_st.v

Begin reading netlist (“/SYNOPSYS/tmax/example st.v). ..

External packages: ieee.std _logic_1164. Bit types: std_logic.

End parsing VHDL file ./example.vhd with O errors;

End reading netlist: #modules=1, top=example, #lines=20, CPU_time=0.02 sec,
Memory=0MB

E. Building the ATPG Model

Building the ATPG design model takes those parts of the design that are to be part of the ATPG process and removes the hierarchy.
You can build the ATPG model for your design using the Run Build Model dialog box, or you can use the run build _-model command
from the command line.

1 Click Build button in command toolbar.

2 Click RUN.

The following shows the result of a build run.

There were 0 primitives and 0 faultable pins removed during model
optimizations
End build model: #primitives=11, CPU_time=0.02 sec, Memory=0MB

Begin learning analyses...
End learning analyses, total learning CPU time=0.02 sec.

The Graphical Schematic Viewer (GSV) toolbar is used to display the schematic view of the circuit. Click SHOW — ALL.It
shows the schematic view of the circuit.

F. Perform Design Rule Check
You can perform DRC using the Run DRC dialog box, or you can execute the run drc command from the command line.

1 Click the DRC button.
2 Click RUN.
The result of a typical DRC run is shown below,

DRC> run drc

Begin simulating test protocol procedures...
Test protocol simulation completed, CPU time=0.00 sec.

Begin scan chain operation checking...

Scan chain operation checking completed, CPU time=0.00 sec.
Begin nonscan rules checking...

Nonscan cell summary: #DFF=0 #DLAT=0 tla_usage_type=none
Nonscan rules checking completed, CPU time=0.00 sec.

Begin DRC dependent learning...

Fast-sequential depth results: control=0(0), observe=0(0),
detect=0(0), CPU time=0.00 sec

DRC dependent learning completed, CPU time=0.00 sec.

No violations occurred during DRC process.
Design rules checking was successful, total CPU time=0.01 sec.

I11. Perform ATPG

1 Click the ATPG button.
Make sure, the pattern source is internal and Add all faults is selected for fault source.
2 Click RUN.

The result of a ATPG run is shown below,

TEST> remove faults -all

0 faults were removed from the fault list.
TEST> add faults -all

40 faults were added to fault list.
TEST> run atpg

ATPG performed for stuck fault model using internal pattern source.
#patterns #faults #ATPG faults test process

stored detect/active red/au/abort coverage CPU time

Begin deterministic ATPG: #uncollapsed faults=40, abort limit=10...
7 40 0 0/0/0 100.00\% 0.02

Uncollapsed Stuck Fault Summary Report

fault class code #Ffaults
Detected DT 40
Possibly detected PT 0
Undetectable ub 0
ATPG untestable AU 0
Not detected ND 0
total faults 40
test coverage 100.00\%

#internal patterns 7
#basic_scan patterns 7

A. Report Faults

1 Faults — Report Faults...

2 Select Report Type as All.

3 Click OK.

To report collaped faults, check the option Report Collapsed.

B. Report Patterns

1 Patterns — Report Patterns...
2 Select Report Type as All.
3 Click OK.

C. Pattern Compression

1 Click the Compress button.
2 Click OK.
The following shows the result of the test pattern compression.

TEST> run pattern_compression 1 -min_eliminated pats 0 -max_useless_passes
off -verbose

Pass 1: Reverse order pattern compression performed on 7 patterns.

#patterns #Faults test process
stored detect/active coverage CPU time
6 40 0O 100.00\% 0.00

Compression pass 1 completed: #patterns _deleted=1, CPU time=0.00

D. Format Vectors for ATPG

We must convert TetraMAX representation of the vectors to a readable format.
1 Click the Write Pat button.
2 Fill the output file name.
3 Select the file format as WGL.
4 Click OK.
A WGL file, patterns.wgl is created in the directory of invocation.

E. Fault Simulation

1 Click Fault Sim.
2 Select External in Pattern Source box and load WGL file.
3 Click Run.

Fault simulation will report the fault coverage.

V. Procedure 2

This procedure does not require the component models in a verilog file. All the primitives used in the top level module can be
described at the begining of the vhdl file as shown below. Another method is to describe all the primitives in a separate file and read
it before the top level module. The same procedure described in the previous sections can be followed after reading the netlist.

LIBRARY 1ieee;
USE i1eee.std logic_1164.all;
use ieee.std logic_components.all;
entity and is
port (A, B - in std_logic;
Z : out std _logic);

end and;
architecture beh_and of and is
begin -- beh_and
Z <= A and B;
end beh_and;
entity or 1is
port (A, B : in std logic;

Z : out std _logic);
end or;
architecture beh _or of or is
begin -- beh_or
Z <= A or B;

end beh_or;
entity not is
port (A - in std_logic;
Z : out std _logic);
end not;
architecture beh_not of not is
begin -- beh_not
Z <= not A;
end beh_not;
entity nand is
port (A, B : in std_logic;
z : out std_logic);
end nand;
architecture beh_nand of nand is
begin -- beh_nand
Z <= A nand B;
end beh_nand;
entity nor is
port (A, B : in std logic;

Z : out std _logic);
end nor;
architecture beh_nor of nor is
begin -- beh_nor

Z <= A nor B;
end beh_nor;

--TOP LEVEL MODULE

ENTITY example 1S

PORT(A, B, C, D, E: IN std_logic;
F: OUT std_logic);

END;

ARCHITECTURE rtl OF example 1S
component and
port (A, B : in std_logic;
z : out std_logic);
end component;

component or

port (A, B - in std_logic;
Z : out std _logic);
end component;

component not
port (A - in std_logic;
z : out std_logic);

end component;

component nand
port (A, B - in std_logic;
z : out std_logic);
end component;

component nor
port (A, B : in std_logic;
z : out std_logic);
end component;

SIGNAL w, X, y, z: std_logic;

BEGIN
S_2 : not port map(A => E, Z => y);
S 3 : nor port map(A =>w, B=>x, Z=>2);
S 4 : nand port map(A => vy, B => z, Z => F);
S 0 : and port map(A => A, B => B, Z => w);
S 1 :or port mp(A=>C, B=>D, Z=>X);
END;

V. ATPG for Sequential Designs
A. HDL Netlist Requirements

Example (Figure 8.5, Pg. 217)
Note: The D flip-flop entity does not have a reset pin.

LIBRARY 1ieee;
USE ieee.std_logic_1164.all;
entity and2 is
port (A, B : in std _logic;
4 : out std _logic);
end and2;
architecture beh_and2 of and2 is
begin -- beh_and2
Z <= A and B;
end beh_and2;
LIBRARY 1ieee;
USE ieee.std_logic_1164.all;
entity or2 is
port (A, B - in std logic;
Z : out std _logic);
end or2;
architecture beh_or2 of or2 is
begin -- beh_or2
Z <= A or B;
end beh_or2;

LIBRARY ieee;
USE i1eee.std logic_1164.all;
entity dff is
port (D, clk : in std _logic;
Q : out std_logic);
end dff;
architecture beh_dff of dff is
begin -- beh dff
process(clk,D)
begin
if (clk’event and clk = ”1”) then Q <= D;
end if;
end process;
end beh dff;

--TOP LEVEL MODULE

LIBRARY 1ieee;

USE i1eee.std logic_1164.all;

ENTITY example IS

PORT(A, clk, rst - IN std_logic;
B: OUT std_logic);

END;

ARCHITECTURE rtl OF example 1S

component and2
port (A, B - in std_logic;
Z : out std _logic);
end component;

component or2
port (A, B - in std_logic;
4 : out std_logic);
end component;

component dff
port (D, clk : in std_logic;
Q : out std_logic);
end component;

SIGNAL x, y, z: std logic;
BEGIN

0 : and2 port map(A => A, B =>vy, Z => X);
1 : dff port map(D => x, clk => clk, Q => y);
2 - dff port map(D => A, clk => clk, Q => z);
3 :or2port mp(A=>vy, B =2z, Z= B);

END;

1 <shell prompt> dc_shell-t

2 Read the file in DFT Compiler.

3 Select the dff entity. (current_design dff)

4 Run compile at the command line.

5 Save the top-level design in Verilog format.

6 Save it as example_st.v.
This will save your design in complete structural model.

B. ATPG process

Read the verilog models of the components “GSCLib_3.0.v”
Read the file, example_st.v

click "Enhanced Seq Modeling’.

Build the ATPG Model.

Perform DRC.

Run ATPG.

Click 'Enable Full-Seq ATPG’ in General ATPG settings frame.
Uncheck 'Random Fill’ in Full Sequential Settings frame.

O~NO O WN -

Follow the same procedure described in the ATPG prcess of combinational circuits earlier in the tutorial.

C. ATPG Results

TEST> run atpg

ATPG performed for stuck fault model using internal pattern source.
#patterns #Faults #ATPG faults test process

stored detect/active red/au/abort coverage CPU time

Begin deterministic ATPG: #uncollapsed faults=30, abort limit=10...
0 0 0 0/2/0 0.00\% 0.00

Begin Full-Sequential ATPG for 30 uncollapsed faults ...
--- abort limit : 10 seconds, NO BACKTRACK LIMIT

#patterns #faults #ATPG faults test process
stored detect/active red/au/abort coverage CPU time
1 10 20 0/0/0 45.00\% 0.01
2 6 14 0/0/0 65.00\% 0.02
2 0 14 0/0/1 65.00\% 10.07
2 0 2 0/9/1 65.00\% 10.08

2 faults were identified as detected by implication,
TEST COVERAGE is now 68.33\%.

Uncollapsed Stuck Fault Summary Report

fault class code #faults
Detected DT 18
Possibly detected PT 5
Undetectable ub 0
ATPG untestable AU 6
Not detected ND 1
total faults 30
test coverage 68.33\%

#internal patterns 2
#full_sequential patterns 2

10

D. Pattern for fault A s-a-1

*Ahkdkh*k

FAULT SITE = A
FAULT TYPE = s-a-1

KTEAAKXAXAXAAXAXAAAXAAXAXAAAXAAAXAAXAAXALdk%

PATTERN GENERATED BY ATPG

Pattern 0 (full_sequential)
Time O: period = 100

Time 0: force_all_pis = 00
Time 140: measure_all_pos =X
Time 200: force_all pis = X1
Time 340: measure_all _pos =0

KTEAEAKXAXAXAAXAXAAAXAAXAXAAAXAAAXAAXAAXAhd%

11

