
Generating LR Syntax Error
Messages from Examples

Written by: Clinton L. Jeffery
Summarized by: Seonho Kim,

Kevin Myers,
and Michael Narayan

Outline

Problem Overview
Solution Overview
LR Grammars
Standard Approaches
Merr + Example Errors
Analysis
Summary

The Problem

Generating error messages for LR parsers
is currently a difficult and error laden
process
Adding error productions to the grammar
makes the grammar difficult to read, and
can hinder error recovery
Manually adding error messages based on
parse state is error prone, and needs to be
updated after every grammatical change

The Solution

Use examples of erroneous code
fragments, and associated errors
messages to generate error messages
within the parser
Have the parser generator perform the
tedious analysis of associating error
messages with illegal grammar constructs

LR Grammars

A subset of Context Free Grammars
(CFGs)
Effective for parsing nearly all practical
programming languages
Performs a left to right scan of the input (L),
and produces a rightmost derivation of the
parse (R)

Types of LR

There are a number of different classes of
LR grammars, with varying levels of power
and associated difficulties in parsing
The three main classes of LR grammars
are SLR, LALR, and full LR, in increasing
order of power, with a corresponding
increase in storage requirements

Operation of a LR Parser

A LR Parser has two main units, a stack
which contains the current state that the
parser is in, and a list of input symbols that
have yet to be parsed
Based on the state at the top of the stack,
and the current input symbol, the parser
than performs one of two actions, a shift or
a reduce

Shifting

On a shift, the parser removes an input
symbol from the input list, and then
pushes it and a corresponding state onto
the stack
In practical compilers, the input symbol
itself is often left off the stack, but it’s type
can be inferred from the state if necessary

Reducing

On a reduce, the parser takes a right hand
side of a grammar rule, and reduces it to
it’s corresponding left hand side
This reduction pops of some number of
(state, input) pairs corresponding to the
number of tokens on the right hand side of
the rule, and then pushes on the left hand
side symbol and an associated state

LR tables

A LR parser is based upon a table that tells it
what to do for a given state at the top of the
stack and a current input token
There are a number of rules that can be used to
construct these tables, though it would be
extremely tedious to do so by hand
In practice these tables can be automatically
generated using tools such as YACC, ANTLR

Example Grammar

1. E → E + T
2. E → T
3. T → T * F
4. T → F
5. F → (E)
6. F → id

Example LR Table

Interpreting the Table

The entries for each (state, input) pairs tell
what should be done given the pair
A shift has the state to go to after the shift,
and a reduce has the rule number to
reduce by
After a reduction, the grammar symbol
from the left hand side of the production is
pushed onto the stack, and the associated
state from the Goto table is also pushed

Example Parse

Stack Input Action
0 id + id $ Shift 5
0id5 + id $ Reduce 6
0F3 + id $ Reduce 4
0T2 + id $ Reduce 2
0E1 + id $ Shift 6
0E1+6 id $ Shift 5
0E1+6id5 $ Reduce 6
…

Possible Errors

When parsing an input sentence; if the
sentence is not accepted by the language,
then an error will be detected
This error will occur if there is no entry for
the current (state, input) pair
When an error occurs, it is necessary for
the compiler to inform the user, hopefully
with enough information for the user to fix
the problem

Error Messages

When an error is detected, an
automatically generated parser (e.g.
YACC) knows where in the input it is
currently processing, as well as the state it
is currently in
Typically, without any guidance it will
inform the user that it ran into an
unexpected token at the current line

Detailed Error Messages

Default error messages are often cryptic
and may only be helpful to experienced
programmers

helloworld.c : 1 : parse error before ‘}’ token

Can a more descriptive error message be
provided?

Generating Descriptive Messages

Currently there are two broadly used methods
for generating error messages when using an
automatically generated parser
Error productions can be added so that for any
(state, input) pair there is always a production,
with this production indicating a type of error
The compiler designer can manually assign
error messages to different (state, input) pairs

Adding Error Productions

When an error production is used the
production explicitly instructs the parser
generator to call an error routine

Lbrace : ‘{‘ | { error_code=MISSING_LBRACE; } error;
Lbrace : ‘{‘ | { yyerror(“Missing left brace”); yyerrok; };

This effectively produces readable error
messages, however it suffers from a
number of problems

Problems with Error Productions

Clutters the grammar, making it much
more difficult to read and determine the
syntax of the language
Makes error recovery difficult, as the extra
rules get in the way of the error recovery
Easy to introduce Reduce-Reduce
conflicts – unacceptable in LR parsing

Manually Assigning Error Messages

The compiler designer modifies the generated
parse so that when an error is detected, the
(state, input) pair is used to lookup an error
message
If an error message has been associated with
that (state, input) pair it is printed, otherwise a
default one is used
This provides the ability to print descriptive error
messages, while avoiding disturbing the
grammar

Manually Assigning Error Messages

This introduces its own difficulties
It is tedious for the compiler writer to make
these manual associations
Even slight changes to the grammar will
change the state associations, forcing the
compiler writer to reassign error messages
to states

Solution Requirements

Must be able to produce useful error
messages
Must be less error prone
Must not complicate the grammar itself
Must be capable of updating itself with
grammar changes

Proposed Solution

Given erroneous code fragments and associated
errors, automatically associate errors with
different parse states

Must be able to produce useful error messages
Can be as descriptive as the example writer can be
Provides a clear association between error messages
and cause

Proposed Solution

Must be less error prone
The association between messages and states
is automated to alleviate the tedious nature of
the task

Must not complicate the grammar itself
Leaves the original grammar unaltered

Must be capable updating itself with
grammar changes

Most erroneous code fragments can port
between grammar changes

Merr

The author has created Merr as an
extension to YACC
Merr takes as input the YACC generated
parser and a set of possible error / error
message pairs
Merr automatically generates the code to
associate an erroneous state with an error
message

Example Errors

int main{} ::: parenthesis or semi-colon missing
int x y; ::: missing comma in variable list
char () { } ::: function name expected
int a[] = {1, 2; ::: unclosed initializer
procedure main() {

:= 3
end
::: assignment missing its left operand

Associating Messages with Errors

Merr first creates a parser which merely outputs
the parse state and input token whenever an
error is detected
This parser is run against all of the example
errors, thus recording what state the parser was
in for each of the errors
A production parser is then created which uses
this information to create a table associating
each error message with a (state, input) pair

Merr + Grammar Changes

Simple changes in the input grammar can
dramatically alter the corresponding LR
table
Every time the grammar is changed, Merr
must be rerun with all the examples

Merr Performance

Successfully used during the development
of the Unicon programming language

Creating Example Errors

Attempt to create a comprehensive set of
error examples initially
Create and add example errors as the
need arises – building into a robust set
Once these example errors are created,
they may be continually used as the
grammar changes

Advantages

Merr can be easily integrated into any
YACC compliant LR parser
Concept is easily distributed to all LR
parser generators
Provides the same power found in the
traditional methods of error messaging for
LR parsers

Advantages

Simplifies the efficient creation of
compilers
Merr doesn’t require the compiler designer
to modify the grammar
Automatically updates itself with grammar
changes

Suitable for research languages where
languages are frequently changed

Problems

No facilities are provided to help determine
the coverage of error messages
Abstracting the error generation process
from the actual implementation makes it
conceptually easier to create error
messages, however, by removing the
designer for the implementation it reduces
the amount of insight the designer can
gain into adequate error coverage

Problems

If the grammar changes in such a way that
formerly valid programs are no longer valid,
error fragments may need to be changed
to reflect the new syntax to avoid
incorrectly associating the provided
message with the incorrect error states

Error fragments are often brief and will often be
unaffected, or be easily fixed

Problems

Many popular production level languages
are well defined and static (e.g. C)

The benefits of this process are wasted on
these languages where highly effective and
efficient compilers have already been made

Author admits Merr is the ‘lowest common
denominator’

Possible Improvements

Assist in creating more complete error
coverage

Automatically generate error fragments for the
designer to annotate/associate
Associate production rules/specific non
terminals with error messages (e.g. ANTLR)

Alternate Approaches

Good error recovery can provide more
descriptive messages than simply error
detection

Compiler can provide possible correct code
fragments

Automated production of error message
through AI techniques
Integrate compiler phases (e.g. ANTLR)

Summary

The author proposes a method where
error messages can be automatically
associated with errors given example code
fragments

Allows error messages to be written
completely separately from the language
recognizer

Summary

Avoids traditional pitfalls

Merr provides an effective solution to
some of the problems facing the designers
of rapidly developing languages

References

Jeffery, Clinton (2003). Generating LR
Syntax Error Messages from Examples.
ACM Transactions on Programming
Languages and Systems, 25(5).
Sebesta, Robert. Programming
Languages, 2003.
Aho et al. Compilers: Principles,
Techniques and Tools, 1986.

