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Abstract

With ever shrinking geometries, growing metal density and increasing clock rate

on chips, delay testing is becoming a necessity in industry to maintain test quality

for speed-related failures. The purpose of delay testing is to verify that the circuit

operates correctly at the rated speed. However, functional tests for delay defects

are usually unacceptable for large scale designs due to the prohibitive cost of func-

tional test patterns and the difficulty in achieving very high fault coverage. Scan-

based delay testing, which could ensure a high delay fault coverage at reasonable

development cost, provides a good alternative to the at-speed functional test.

This dissertation addresses several key challenges in scan-based delay test-

ing and develops efficient Automatic Test Pattern Generation (ATPG) and Design-

for-testability (DFT) algorithms for delay testing. In the dissertation, two algo-

rithms are first proposed for computing and applying transition test patterns using

stuck-at test vectors, thus avoiding the need for a transition fault test generator. The

experimental results show that we can improve both test data volume and test appli-



cation time by 46.5% over a commercial transition ATPG tool. Secondly, we pro-

pose a hybrid scan-based delay testing technique for compact and high fault cover-

age test set, which combines the advantages of both the skewed-load and broadside

test application methods. On an average, about 4.5% improvement in fault cov-

erage is obtained by the hybrid approach over the broad-side approach, with very

little hardware overhead. Thirdly, we propose and develop a constrained ATPG

algorithm for scan-based delay testing, which addresses the overtesting problem

due to the possible detection of functionally untestable faults in scan-based testing.

The experimental results show that our method efficiently generates a test set for

functionally testable transition faults and reduces the yield loss due to overtesting

of functionally untestable transition faults. Finally, a new approach on identify-

ing functionally untestable transition faults in non-scan sequential circuits is pre-

sented. We formulate a new dominance relationship for transition faults and use

it to help identify more untestable transition faults on top of a fault-independent

method based on static implications. The experimental results for ISCAS89 sequen-

tial benchmark circuits show that our approach can identify many more functionally

untestable transition faults than previously reported.



To my parents, my wife and my daughter, who have given me

endless support and happieness...

I Love You!



Acknowledgment

I would like to express my deepest appreciation to my advisor, Dr. Michael

S. Hsiao, for his constant guidance, encouragement and support in helping me to

complete this work. I am highly indebted for his insightful advice, which help me

meander through my research and life in States. To me, Dr. Hsiao is much more

than a research advisor, but also one of the best friends in my life. I will cherish the

experience learning and working with him forever.

In addition, I would like to thank Dr. Richard M. Buehrer, Dr. Dong S. Ha,

Dr. Thomas L Martin and Dr. Mark M Shimozono, for serving on my committee.

I am extremely thankful to Dr. Sreejit Chakravarty, Dr. Seongmoon Wang,

Dr. Paul J. Thadikaran and Dr. Srimat T. Chakradhar for their help and guidance

on my research.

I would like to thank my friends who have made my stay at graduate school

enjoyable and people in the Proactive research group who have made every aspect

of research exciting and interesting to me.

Finally, I would like to thank my beloved family for their unconditional love

and support on me. Without their invaluable motivation and help, I would not be

who I am today.

V



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       II

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XII

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Our Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries for Delay Testing 9

2.1 Functional Delay Testing . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Scan-based Delay Testing . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Enhanced-scan . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Skewed-load . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Broadside . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Transition Fault ATPG Based-on Stuck-at Test Vectors 17

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Achievable Coverage using S@ Tests . . . . . . . . . . . . . . . . 19

3.3 Transition ATPG algorithms . . . . . . . . . . . . . . . . . . . . . 21

VI



3.3.1 Fault-list-based Extension . . . . . . . . . . . . . . . . . . 21

3.3.2 Priority-based Extension . . . . . . . . . . . . . . . . . . . 23

3.3.3 Compaction . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Comparison With Commercial ATPG . . . . . . . . . . . . . . . . 28

3.6 Additional Benefits of Reusing s@ Vectors . . . . . . . . . . . . . 30

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Efficient Transition Testing Using Test Chains and Exchange Scan 33

4.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . 33

4.2 ATE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 ATE Repeat and Transition Test Chains . . . . . . . . . . . 39

4.2.2 ATE Repeat . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 Transition Test Chains via Weighted Transition Graph . . . 40

4.3 Exchange Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Constrained ATPG to Minimize Overtesting . . . . . . . . . . . . . 50

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.1 Experimental Results for ATE Repeat . . . . . . . . . . . . 57

4.5.2 Experimental Results for Exchange Scan . . . . . . . . . . 58

4.5.3 Experimental Results for Constrained ATPG . . . . . . . . 59

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Hybrid Scan-based Delay Testing 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Skewed-load vs. Broadside . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Key Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

VII



5.5 Selecting Skewed-load Flip-flops . . . . . . . . . . . . . . . . . . . 74

5.6 Generating Fast Scan Enable Signal . . . . . . . . . . . . . . . . . 76

5.6.1 Multiple Fast Scan Enable Signals . . . . . . . . . . . . . . 77

5.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Constrained ATPG for Broadside Transition Testing 83

6.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Background and Motivation . . . . . . . . . . . . . . . . . . . . . 85

6.3 Functionally Untestable Faults Identification . . . . . . . . . . . . . 91

6.4 Constrained ATPG For Broadside Testing . . . . . . . . . . . . . . 92

6.4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 93

6.4.2 Constrained ATPG Algorithm . . . . . . . . . . . . . . . . 96

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 On Identifying Functionally Untestable Transition Faults 102

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2.1 Static Logic Implication . . . . . . . . . . . . . . . . . . . 105

7.2.2 Fault Dominance . . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.1 Phase 1: Untestable Transition Fault Identification with Im-

plication . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.2 Phase 2: Dominated Untestable Faults Identification . . . . 112

7.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

VIII



8 Conclusions 122

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

IX



List of Tables

2.1 Enhanced-scan vs. Skewed-load vs. Broadside . . . . . . . . . . . 16

3.1 Storage Increase. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Results for Exhaustive Patterns. . . . . . . . . . . . . . . . . . . . 20

3.3 Dictionary with fault-dropping. . . . . . . . . . . . . . . . . . . . . 21

3.4 Dictionary without fault-dropping. . . . . . . . . . . . . . . . . . . 23

3.5 Results for Fault-List-Based Extension. . . . . . . . . . . . . . . . 26

3.6 Results for Priority-based Extension. . . . . . . . . . . . . . . . . . 27

3.7 Comparison with Native Transition ATPG Tool. . . . . . . . . . . . 29

3.8 Improvement on Data Storage Requirement . . . . . . . . . . . . . 31

4.1 Test Data Volume Comparison . . . . . . . . . . . . . . . . . . . . 34

4.2 Enhanced Scan Transition Test Set Example . . . . . . . . . . . . . 38

4.3 Control Sequence of Transition Test . . . . . . . . . . . . . . . . . 39

4.4 Fault Dictionary without Fault-Dropping . . . . . . . . . . . . . . . 42

4.5 Results with different chain Lengths . . . . . . . . . . . . . . . . . 55

4.6 Results with/without Essential Vectors . . . . . . . . . . . . . . . . 56

4.7 ATE Repeat vs. COM . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8 ATE Weighted Transition Pattern Graph Algorithm vs. COM . . . . 59

4.9 Results with/without Constraint . . . . . . . . . . . . . . . . . . . 61

X



5.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Regular Counting Transitions . . . . . . . . . . . . . . . . . . . . . 89

6.2 Reset Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Illegal Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 CNF Formula Construction . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Implication on Decision Assignment . . . . . . . . . . . . . . . . . 96

6.6 Functionally Untestable Faults Identified by Implication(TRANIMP) 98

6.7 Effectiveness of Random Vectors On Avoiding Functionally Untestable

Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.8 Constrained ATPG Vs.Non-constrained ATPG . . . . . . . . . . . 100

7.1 Initialization Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2 Capture Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Experimental Results using Implication & Dominance . . . . . . . 120

7.4 Comparison With Previous Work . . . . . . . . . . . . . . . . . . 121

XI



List of Figures

4.1 Tester Memory Model . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 ATE Storage Model . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Generic Weighted Transition Graph Algorithm . . . . . . . . . . . 43

4.4 Weighted Transition-Pattern Graph Example . . . . . . . . . . . . . 44

4.5 Block Diagram of Hold-Scan System . . . . . . . . . . . . . . . . 47

4.6 Hold Scan Cell and Exchange Scan Timing . . . . . . . . . . . . . 48

4.7 Scan Operation with/without exchange . . . . . . . . . . . . . . . 49

4.8 Arbitrary starting states in Enhanced Scan . . . . . . . . . . . . . . 51

4.9 Weighted Pattern Graph with two Weights . . . . . . . . . . . . . . 55

4.10 Graphical Experimental Results . . . . . . . . . . . . . . . . . . . 62

5.1 An Example Full-Scan Circuit (a) Original Circuit (b) Two Frame

Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Scan-based Delay Test Diagram (a) Skewed-load Approach (b) Broad-

side Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Assignment of State Inputs in Time Frame 2 (a) Broad-side Ap-

proach (b) Skewed-load Approach . . . . . . . . . . . . . . . . . . 71

5.4 Function Dependency Untestable Fault . . . . . . . . . . . . . . . . 72

5.5 Pseudo Code for Skewed-load Flip-flop Selection Algorithm . . . . 75

XII



5.6 Fast Scan Enable Signal Generator . . . . . . . . . . . . . . . . . . 76

5.7 Multiple Fast Scan Enable Signal Control Circuit . . . . . . . . . . 78

6.1 Untestable Fault in Skewed-load . . . . . . . . . . . . . . . . . . . 85

6.2 Untestable faults for S344 . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Functional testing vs. Scan-based testing . . . . . . . . . . . . . . . 87

6.4 Modulo-6 counter . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5 Example of Overtesting . . . . . . . . . . . . . . . . . . . . . . . . 90

6.6 Approximation of Functionally Untestable Transition Faults. . . . . 92

6.7 Broadside ATPG . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1 Example sequential circuit . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Implication Graph for [g,1] . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Test set
���

and
���

. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.4 segment of sequential circuit . . . . . . . . . . . . . . . . . . . . . 113

7.5 Initialization Dominance Graph . . . . . . . . . . . . . . . . . . . 116

7.6 Capture Dominance Graph . . . . . . . . . . . . . . . . . . . . . . 116

XIII



Chapter 1

Introduction

The main objective of traditional test development has been the attainment of high

stuck-at fault coverage. However, the presence of some random defects does not

affect a circuit’s operation at low speed while it may cause circuit malfunction at

rated speed. This kind of defect is called the delay defect. With ever shrinking ge-

ometries, growing metal density and increasing clock rate of chips, delay testing is

gaining more and more industry attention to maintain test quality for speed-related

failures. The purpose of a delay test is to verify that the circuit operates correctly at

a desired clock speed. Although application of stuck-at fault tests can detect some

delay defects, it is no longer sufficient to test the circuit for the stuck-at faults alone.

Therefore, delay testing is becoming a necessity for today’s IC manufacturing test.

In the past, testing a circuit’s performance was typically accomplished with

functional test patterns. However, developing functional test patterns that attain

satisfactory fault coverage is unacceptable for large scale designs due to the pro-

hibitive development cost. Even if functional test patterns that can achieve high

fault coverage are available, applying these test patterns at-speed for high speed

chips requires very stringent timing accuracy, which must be provided by very ex-

1



pensive automatic test equipment (ATEs). The scan-based delay testing where test

patterns are generated by an automatic test pattern generator (ATPG) on designs

that involve scan chains is increasingly used as a cost efficient alternative to the at-

speed functional pattern approach to test large scale chips for performance-related

failures [BRS � 02,SBG � 02]. Design-for-testability (DFT)-focused ATEs [COM00,

ROB00], which are designed and developed to lower ATE cost by considering

widely used DFT features of circuits under test (CUTs) such as full and partial

scan are emerging as a strong trend in the test industry.

Several delay fault models have been developed, such as transition delay

fault [WLRI87], gate delay fault [CIR87, PR97], path delay fault [SMI85], and

segment delay fault models [HPA96]. A transition fault at node
�

assumes a large

delay at
�

such that the transition at
�

will not reach the latch or primary output

within the clock period. The path delay fault model assumes a small delay at each

gate. It models cumulative effect of gate delays along a specific path, from a pri-

mary input to a primary output. If the cumulative delay exceeds the slack for the

path, then the chip fails. Segment delay fault targets path segments instead of com-

plete paths. Among these fault models, the transition delay fault model [WLRI87]

is most widely used in industry for its simplicity. ATPGs and fault simulators that

are developed for stuck-at faults can be reused for transition delay faults with mi-

nor modifications. Unlike the path delay fault model [SMI85] where the number

of target faults is often exponential, the number of transition delay faults is linear

with the number of circuit lines. This eliminates the need for critical path analysis

and identification procedures, which are necessary for the path delay fault model.

The gate delay model [CIR87, PR97] is similar to the transition delay fault model

in that the delay fault is lumped at one gate in the CUT. However, unlike the transi-

tion delay model which does not take into account fault sizes, the gate delay model

2



takes into account fault sizes. The segment delay fault model [HPA96] is a trade-off

between the path delay fault and transition delay fault models.

Detection of a delay fault normally requires the application of a pair of test

vectors; the first vector, called initialization vector, initializes the targeted faulty

circuit line to a desired value and the second vector, called launch vector, launches

a transition at the circuit line and propagates the fault effect to primary output(s)

and/or scan flip-flop(s) [WLRI87, SB87].

1.1 Motivation

In general, (non-scan) functional testing can be impractical for larger circuits since

large test sets may be required to achieve a desirable fault coverage. As a result, at-

speed AC scan testing has been widely used in the industry to detect delay-induced

defects. Compared to functional testing, scan-based testing for delay faults can

decrease the overall ATPG complexity and cost, since both controllability and ob-

servability on the flip-flops are enhanced.

Although delay fault testing has been researched for years, most research on

delay fault testing has focused on the combinational part of the circuits. However,

due to limited controllability of state inputs when standard scan is employed, apply-

ing these techniques to standard scan designs is not straightforward. Traditionally,

three different approaches, Enhanced-Scan [DS91], Skewed-Load [SAV92a] and

Broadside [SP94b], have been used to apply two-vector tests to standard scan de-

signs. They differ in their way of storing and applying the second vector of each

vector pair.

Several techniques for reducing test data volume and test application time

for single cycle scan-tests have been presented in the literature [KBB � 01, HP99,

3



KOE91, CC01, LCH98, DT00]. These methods assume that only 5-10% of the bits

are fully specified. Unspecified bits are filled to detect the easy to detect faults.

Different codes to compress the information in the tester and decompressing them

on chip [KBB � 01,CC01,DT00] or using partitioning and applying similar patterns

to the different partitions [HP99,LCH98] have been proposed. The techniques pro-

posed here compliment the work on compressing individual vectors. All of these

techniques can also be used to compress the individual vectors comprising the tran-

sition test sets. They, however, do not address the data explosion in going from

stuck-at tests to transition tests or the test application time issue with transition

tests.

Nevertheless, the drawback of scan-based delay tests lies in two areas: hard-

ware overhead and potential yield loss due to overtesting. In [REA01], the author

reported that scan-based testing may fail a chip due to the delay faults that do not

affect the normal operation, and thus it is unnecessary to target those functionally

unsensitizable faults. In other words, we want to avoid failing a chip due to a sig-

nal transition/propagation that was not intended to occur in the functional mode.

In [LKC00a, LKC00c], the authors also addressed the impact of delay defects on

the functionally untestable paths on the circuit performance. Moreover, a scan test

pattern, though derived from targeting functionally testable transition faults, can in-

cidentally detect some functionally untestable transition faults if the starting state is

an unreachable state.

Furthermore, several papers [RM01, REA01, MaLB00] have discussed the

relationship between functional testing and scan-based testing. However, from our

knowledge, currently there is no quantitative analysis on functional untestable tran-

sition faults and scanning testing. In this dissertation, we describe a novel con-

strained ATPG algorithm for transition faults. Two main contributions of our work

4



are: (1) the constrained ATPG only targets the functionally testable transition faults

and minimizes detection of any identified functionally untestable transition faults;

(2) the constrained ATPG can identify more functionally untestable transition faults

than the conventional transition ATPG tools. The first contribution (the constrained

ATPG) enables us to derive transition vectors that avoid illegal starting states, while

the second contribution helps us to maximize the state space that we need to avoid.

Because we want to avoid launching and propagating transitions in the circuit that

are not possible in the functional mode, a direct benefit of our method is the reduc-

tion of yield loss due to overtesting of these functionally untestable transitions. Our

experimental results showed that significantly more functionally untestable transi-

tion faults can be avoided in the final test set.

1.2 Our Work

In the effort to investigate novel and efficient delay fault testing algorithms and

techniques, several ideas on delay fault testing has been explored. This disserta-

tion addresses the following problems on developing novel and efficient ATPG and

Design-for-testability (DFT) algorithms for all three approaches for scan-based de-

lay testing.

1. Explosion in test data volume and test application time

2. Lower fault delay fault coverage

3. High complexity in delay fault ATPG

4. The overtesting problem in scan-based delay testing

5. Functional vs. scan-based delay testing

5



We first present two efficient transition fault ATPG algorithms [LHCT02a,

LHCT03], in which we compute good quality transition test sets using stuck-at test

vectors. Experimental results obtained using the new algorithms show that there is

a 20% reduction in test set size compared to a state-of-the-art native transition test

ATPG tool, without losing fault coverage. Other benefits of our approach, viz. pro-

ductivity improvement, constraint handling and design data compression are also

highlighted.

Our second contribution [LHCT02b,LHCT04] is on the techniques to reduce

data volume and application time for scan-based transition test. We propose a novel

notion of transition test chains to substitute the conventional transition pattern and

combine this idea with the ATE repeat capability to reduce test data volume. Then

a new DFT technique for scan testing is presented to address the test application

issue. Our experimental results show that our technique can improve both test data

volume and test application by 46.5% over a commercial ATPG tool.

Thirdly, a novel scan-based delay test approach [WLC03,WLC04], referred

to as the hybrid delay scan, is proposed. The proposed scan-based delay testing

method combines advantages of the skewed-load and broad-side approaches. The

hybrid approach can achieve higher delay fault coverage than the broad-side ap-

proach. Unlike the skewed-load approach whose design requirement is often too

costly to meet due to the fast scan enable signal that must switch in a full system

clock cycle, the hybrid delay scan does not require a strong buffer or buffer tree to

drive the fast scan enable signal. Hardware overhead added to standard scan designs

to implement the hybrid approach is negligible. Since the fast scan enable signal

is internally generated, no external pin is required. Transition delay fault coverage

achieved by the hybrid approach transition was equal to or higher than that achieved

by the broad-side for all ISCAS 89 benchmark circuits [BBK89]. On an average,

6



about 4.5% improvement in fault coverage was obtained by the hybrid approach

over the broad-side approach.

Next, we propose a new concept of testing only functionally testable transi-

tion faults in Broadside Transition testing via a novel constrained ATPG [LH03a,

LH03b]. Illegal (unreachable) states that enable detection of functionally untestable

faults are first identified, and this set of undesirable illegal states is efficiently rep-

resented as a Boolean formula. Our constrained ATPG then uses this constraint

formula to generate Broadside vectors that avoid those undesirable states. In do-

ing so, our method efficiently generates a test set for functionally testable transition

faults and minimizes detection of functionally untestable transition faults. Because

we want to avoid launching and propagating transitions in the circuit that are not

possible in the functional mode, a direct benefit of our method is the reduction of

yield loss due to overtesting of these functionally untestable transitions.

Finally, we proposed a new approach on identifying functionally untestable

transition faults in non-scan sequential circuits. A new dominance relationship for

transition faults is formulated and used to identify more sequentially untestable

transition faults. The proposed method consists of two phases: first, a large number

of functionally untestable transition faults is identified by a fault-independent se-

quential logic implications implicitly crossing multiple time-frames, and the iden-

tified untestable faults are classified into three conflict categories. Second, addi-

tional functionally untestable transition faults are identified by dominance relation-

ships from the previous identified untestable transition faults. The experimental

results for ISCAS89 sequential benchmark circuits showed that our approach can

quickly identify many more functionally untestable transition faults than previously

reported.

In short, the topics we have investigated include:

7



1. Transition Fault ATPG Based on Stuck-at Test Vectors

2. Efficient Transition Testing using Test Chains and Exchange Scan

3. Hybrid Scan-based Delay Testing

4. Constrained ATPG for Broadside Transition Testing

5. Functional Untestable Transition Faults Identification

The rest of the dissertation is organized as follows. First, we give a brief

review of the preliminaries on delay fault testing in Chapter 2. Then, a novel transi-

tion fault ATPG based on stuck-at test vectors is discussed in Chapter 3. Chapter 4

presents two techniques to further reduce the test data volume and test application

time for scan-based transition test. In Chapter 5, a novel scan-based delay test ap-

proach, referred to as the hybrid delay scan, is proposed. Then,we proposed a new

concept of testing only functionally testable transition faults in Broadside Transi-

tion testing via a novel constrained ATPG in Chapter 6. Chapter 7 presents a novel

approach to identify functional untestable transition faults using implication and

transition dominance relationship. Finally, Chapter 8 concludes the dissertation.
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Chapter 2

Preliminaries for Delay Testing

Several delay fault models have been developed for delay defects: transition de-

lay fault [WLRI87], gate delay fault [CIR87, PR97], path delay fault [SMI85], and

segment delay fault models [HPA96]. A transition fault at node
�

assumes a large

delay at
�

such that the transition at
�

will not reach the latch or primary out-

put within the clock period. The path delay fault model assumes a small delay at

each gate. It models cumulative effect of gate delays along a specific path, from

a primary input to a primary output. If the cumulative delay exceeds the slack for

the path, then the chip fails. Segment delay fault targets path segments instead of

complete paths.

Among these fault models, the transition delay fault model [WLRI87] is

most widely used in industry for its simplicity. ATPGs and fault simulators that are

developed for stuck-at faults can be reused for transition delay faults with minor

modifications. Unlike the path delay fault model [SMI85] where the number of

target faults is often exponential, the number of transition delay faults is linear

to the number of circuit lines. This eliminates the need for critical path analysis

and identification procedures, which are necessary for the path delay fault model.
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Gate delay model [CIR87, PR97] is similar to transition delay fault model in that

the delay fault is lumped at one gate in the CUT. However, unlike transition delay

model which does not take into account fault sizes, gate delay model takes into

account fault sizes. Segment delay fault model [HPA96] is a trade-off between path

delay fault and transition delay fault models.

2.1 Functional Delay Testing

In the past, testing circuit’s performance was typically accomplished with func-

tional test patterns(i.e. testing a microprocessor with instruction sequences [LKC00b,

LKC00d, CS01, KLC � 02]), in which the input signals to the CUT are determined

by its functionality. This result in a much smaller set of vector pairs applicable for

delay testing. Also, after the application of certain test sets, some registers/flip-

flops may not be enabled in the immediate next cycle, and thus delay fault effects

propagated to them can not be latched and will be lost. Therefore, developing func-

tional test patterns that attain satisfactory fault coverage is unacceptable for large

scale designs due to the prohibitive development cost. Even if functional test pat-

terns that can achieve high fault coverage are available, applying these test patterns

at-speed for high speed chips requires very stringent timing accuracy, which can

be provided by very expensive automatic test equipments (ATEs). The scan-based

delay testing where test patterns are generated by an automatic test pattern genera-

tor (ATPG) on designs that involve scan chains is increasingly used as a cost effi-

cient alternative to the at-speed functional pattern approach to test large scale chips

for performance-related failures [BRS � 02,SBG � 02]. Design-for-testability (DFT)-

focused ATEs [COM00, ROB00], which are designed and developed to lower ATE

cost by considering widely used DFT features of circuits under test (CUTs) such as
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full and partial scan are emerging as a strong trend in test industry.

2.2 Scan-based Delay Testing

Traditionally, three different approaches have been used to apply two-vector tests

to standard scan designs. They differ in the way of storing and applying the second

vector of each vector pair. Enhanced-Scan [DS91]. Skewed-Load [SAV92a] and

Broadside [SP94b].

2.2.1 Enhanced-scan

In the first approach, enhanced-scan [DS91], two vectors (V1, V2) are stored in the

tester scan memory. The first scan shift loads V1 into the scan chain. It is then

applied to the circuit under test to initialize it. Next, V2 is scanned in, followed by

an apply and subsequently a capture of the response. During shifting in of V2 it

is assumed that the initialization of V1 is not destroyed. Therefore enhanced-scan

transition testing assumes a hold-scan design [DS91].

Enhanced scan transition test has two primary advantages: coverage and

test data volume. Since enhanced scan testing [DS91] allows the application of

any arbitrary vector pair to the combinational part of a sequential circuit. Hence,

complete fault coverage can be attained.

Tester memory requirement is also important, and considerable attention is

being paid to reduce the tester memory requirement for s@ tests. The problem

is far worse for transition tests as the following data shows. In [HBP01] it was

reported that for skewed load transition tests for an ASIC, the s@ vector memory

requirement was 8.51M versus 50.42M for transition test. This implies an increase
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of a factor of 5.9.

The downside of using enhanced-scan transition test is that special scan-

design, viz. hold-scan that can hold two bits, is required. This may leads to higher

area overhead, which may prevent it from using widely in ASIC area. However,

in microprocessors and other high performance circuits that require custom design,

such cells are used for other reasons. In custom designs, the circuit often is not fully

decoded, hold scan cells are used to prevent contention in the data being shifted,

as well as preventing excessive power dissipation in the circuit during the scan

shift phase. Furthermore, if hold-scan cells are used, the failing parts in which

only the scan logic failed can often be retrieved; thus enhancing, to some extent,

the diagnostic capability associated with scan DFT. Therefore, for such designs

enhanced-scan transition tests is preferred. This is our motivation for investigating

good ATPG techniques for enhanced-scan transition tests.

Therefore, we can see that the two vectors (V1,V2) are independent to each

other. However, in the next two approaches (skewed-load and broadside), the sec-

ond vector is derived from the first vector.

2.2.2 Skewed-load

In the second approach, referred to as the skewed-load [SP93] or launch-from-shift

approach, The initialization vector of a test vector pair is first loaded into scan

chain by � consecutive scan shift operations, where � is the number of scan flip-

flops in the scan chain, in the same fashion as a stuck-at test vector is loaded into

the scan chain. The last shift cycle when a test vector is fully loaded into the scan

chain CUT, is referred as the initialization cycle. The second vector is obtained by

shifting in the first vector (initialization vector), which is loaded into the scan chain,
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by one more scan flip-flop and scanning in a new value into the scan chain input.

Note that the scan enable signal stays at logic high during the launch cycle in the

timing diagram shown in Figure 5.2 (a). At the next clock cycle (capture cycle),

the scan enable signal switches to logic low and the scan flip-flops in the scan chain

are configured in their normal mode to capture the response to the scanned in test

vector. Since the capture clock is applied at full system clock speed after the launch

clock, the scan enable signal, which typically drives all scan flip-flops in the CUT,

should also switch within the full system clock cycle. This requires the scan enable

signal to be driven by a sophisticated buffer tree or strong clock buffer. Such design

requirement is often too costly to meet. Furthermore, meeting such a strict timing

required for the scan enable signal may result in longer design time.

Since the second vector of each vector pair is obtained by shifting in the first

vector by one more scan flip-flop, given a first vector, there are only two possible

vectors for the second vector that differs only at the value for the first scan flip-

flop whose scan input is connected to the scan chain input. This shift dependency

restricts the number of combinations of test vector pairs to
�������

[SB91] in standard

scan environment, where � is the number of scan flip-flops in the scan chain. If there

is a transition delay fault that requires a 1 at state input ���
	���
 in an initialization

vector and requires a 0 at state input ����	 in the corresponding launch vector to be

detected, then that fault is untestable by the skewed-load approach (assume that the

scan chain is constructed by using only non-inverting outputs of scan flip-flops).

2.2.3 Broadside

In the third approach, referred to as the broad-side [SP93, SP94a] or launch-from-

capture, Similar to the skewed-load approach, the initialization vector of a test vec-

13



tor pair is first loaded into scan chain by � consecutive scan shift operations, where

� is the number of scan flip-flops in the scan chain, in the same fashion as a stuck-at

test vector is loaded into the scan chain. Then, the second vector is obtained from

the circuit response to the first vector.

Hence, the scan flip-flops are configured into the normal mode by lowering

the enable signal before every launch cycle (see Figure 5.2 (a)). Since the launch

clock following an initialization clock need not be an at-speed clock, the scan enable

signal does not have to switch to logic low at full system clock speed between the

initialization clock and the launch clock. Note that in the broad-side approach,

launch vectors are applied when scan flip-flops are in their normal mode. In other

words, the at-speed clocks, the capture clock after the launch, is applied to scan flip-

flops while the scan flip-flops stays in their normal mode. Hence, the scan enable

signal does not have to switch between the launch cycle and the capture cycle when

clocks are applied at full system clock speed. Hence, the broad-side approach does

not require at-speed transition of the scan enable signal and can be implemented

with low hardware overhead.

Even though the broad-side approach is cheaper to implement than the skewed-

load approach, fault coverage achieved by test pattern sets generated by the broad-

side approach is typically lower than that achieved by test pattern sets generated

by the skewed-load approach [SP94a]. Test pattern sets generated by the broad-

side approach are typically larger than those generated by the skewed-load ap-

proach [SBG � 02]. In order to generate two vector tests for the broad-side approach,

an ATPG with sequential property that considers two full time frames is required.

On the other hand, test patterns for the skewed-load approach can be generated by

a combinational ATPG with little modification. Hence, higher test generation cost

(longer test generation time) should be paid for the broad-side approach.
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Since in the broad-side approach, the second vector is given by the circuit

response to the first vector, unless the circuit can transition to all
���

states, where �

is the number of scan flip-flops, the number of possible vector that can be applied

as second vectors of test vector pairs is limited. Hence, if a state required to acti-

vate and propagate a fault is an invalid state, i.e., the state cannot be functionally

justified, then the transition delay fault is untestable. Typically, in large circuits that

have a large number of flip-flops, the number of reachable states is only a small

fraction of
� �

states. Due to this reason, transition fault coverage for standard scan

designs is often substantially lower than stuck-at fault coverage.

2.3 Summary

Among the three approaches for applying delay tests, broadside suffers from poor

fault coverage [SP94b]. Since there is no dependency between the two vectors

in Enhanced scan, it can give better coverage than skewed-load transition test.

Skewed-load transition tests also lead to larger test data volume. Compared to

stuck-at tests, the increase in the number of vectors required for enhanced scan

to get complete coverage is about 4X [LHCT02a] For skewed-load transition test,

it has been observed that the data volume for an ASIC has an increase of 5.9X

[HBP01].

For most circuits, test sets generated by the skewed-load approach achieve

higher fault coverage than those generated by the broadside approach [SAV94].

Sizes of test pattern sets generated by the skewed-load approach are also typically

smaller than those generated by the broad-side approach [SBG � 02]. However, the

skewed-load approach requires higher hardware overhead and may require longer

design times (see Section 5.3).
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We summary the advantages and disadvantages of the three approaches in

table 2.1.

Table 2.1: Enhanced-scan vs. Skewed-load vs. Broadside

Enhanced-scan Skewed-load Broadside
Fault Coverage Highest Higher Lowest
Test Set Size Smallest Smaller Largest

ATPG Complexity Lowest Higher Highest
ATPG Time Shortest Shorter Longest

Scan-cell Type Hold-scan Standard standard
Hardware Overhead Highest Higher Lowest
Overtesting Ratio Highest Higher Lowest
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Chapter 3

Transition Fault ATPG Based-on

Stuck-at Test Vectors

3.1 Motivation

Enhanced scan transition test has two primary advantages: coverage and test data

volume. Among the three types of transition tests, broadside tests suffer from poor

fault coverage [SAV94, SP94b]. Enhanced-scan, in general, gives better coverage

than skewed-load transition test. This stems from the fact that, unlike skewed-load

tests, there is no dependency between the two vectors in enhanced-scan test pattern.

Tester memory requirement is also important, and considerable attention is

being paid to reduce the tester memory requirement for s@ tests. The problem is far

worse for transition tests as the following data shows. In [HBP01] it was reported

that for skewed load transition tests for an ASIC, the s@ vector memory require-

ment was 8.51M versus 50.42M for transition test. This implies an increase of a

factor of 5.9. This increase in tester memory requirement is also true if enhanced-

scan transition tests are used. We generated s@ and enhanced-scan transition tests
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for the ISCAS85 and ISCAS89 benchmark circuits using a state-of-the-art commer-

cial ATPG tool, and the results are shown in Table 3.1. Both s@ and transition test

Table 3.1: Storage Increase.

�����������	� 
����
��������� ������������������� �! #"
�����$�����
%'&$���(�)��� *+�,���-&������

C1908 129 263 4.08
C2670 116 198 3.41
C3540 179 366 4.09
C5315 124 248 4
C6288 36 90 5
C7552 237 378 3.19
S5378 266 490 3.68
S9234 410 837 4.08

S13207 485 1002 4.14
S15850 464 924 3.98
S35932 75 137 3.65
S38417 1017 1927 3.79
S38584 727 1361 3.74

vectors were generated with compression option turned on. Note that each pattern

for enhanced-scan transition test requires two vectors. The data shows an expansion

of anywhere between 4X and 5X in tester memory requirement for transition tests

when compared with that required for s@ tests.

The downside of using enhanced-scan transition test is that special scan-

design, viz. hold-scan, is required. For designs using custom logic, such as high

performance microprocessors, the circuit is often not fully decoded. In such a sce-

nario, to avoid contention during the scan-shift phase, hold-scan design is used

even for applying s@ tests. Therefore, for such designs enhanced-scan transition

tests is preferred. This is our motivation for investigating good ATPG techniques

for enhanced-scan transition tests.

The rest of the chapter is organized as follows. Section 3.2 explains the
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bounding of the transition fault coverage based on s@ test set. In Section 6.4

heuristics to compute a much smaller set of transition patterns with the achievable

coverage is discussed. Experimental result comparing these heuristics is discussed

in Section 3.4. Section 3.5 compares results to a state-of-the-art transition fault

ATPG tool. In addition to coverage, the fact that we are reusing the s@ patterns has

a number of additional benefits pertaining to productivity improvement, constraint

handling and design data compression. These are discussed in Section 3.6. Finally,

Section 3.7 concludes the chapter.

3.2 Achievable Coverage using S@ Tests
There is a close correlation between s@ vectors and enhanced-scan transition pat-

terns. The condition to detect a transition fault is more stringent than for s@ faults

in that an extra initialization vector is required. For example, a transition pattern

for slow-to-fall fault on line � requires an initial vector that initializes � to 1, done

by a test vector that excites � s@0, and a test vector for detecting fault � s@1. The

resulting vector pair causes a falling transition and propagates the fault effect to an

observable node. Transition pattern for � slow-to-rise can be similarly composed.

If the s@ fault coverage of a test set
�

is � , then the enhanced-scan transition

pattern set derived by using only vectors in
�

has transition fault coverage of at most

� . To understand this, suppose we have an undetected s@-0 fault, then there must

be at least one slow-to-rise transition fault that cannot be detected no matter how

we rearrange the test vectors in the test set. Therefore, the s@ coverage of a given

test set
�

is the upper bound for transition fault coverage, if the transition patterns

are composed from vectors in
�

.

The conditions under which the upper-bound is not achieved are as follows.

A slow-to-rise fault at
�

is not detectable even when
�

s@-0 is detectable if and
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only if there does not exist any s@ test in the given s@ test set,
�

, which sets
�

to 0. Similarly, a slow-to-fall fault at
�

is not detectable even when
�

s@-1 is

detectable if and only if there does not exist any s@ test in
�

which sets
�

to 1. In

both cases an initialization vector does not exist.

Table 3.2: Results for Exhaustive Patterns.

Circuit [HRP97] S@ Trans Exhaust Pairwise
Vec FC(%) FC(%) Vec TFC(%)

c880 128 100 95.51 16256 100
c1355 198 99.77 94.23 39006 99.77
c1908 143 99.67 93.03 20306 99.67
c3540 202 96.29 88.68 40602 96.27
c5315 157 99.56 96.91 24492 99.54
c6288 41 99.42 97.60 1640 99.19
S344 31 100 89.31 930 100
S382 41 100 90.50 1640 100
S526 82 99.93 90.99 6642 99.93
S832 179 99.20 82.12 31862 99.20
S1196 197 99.97 87.52 38612 99.97
S1423 97 99.11 95.12 9312 99.11
S5378 332 98.77 93.65 109892 98.40

S35932 78 90.50 89.97 6006 90.50
S38417 1207 99.67 97.59 1455642 99.66
S38584 893 95.34 91.63 796556 95.02

To determine the maximal transition coverage obtainable by exhaustively

pairing all s@ vectors was computed. Results are shown in Table 3.2. STRATE-

GATE [HRP97] stuck-at test sets were used. Columns 3, 6 of Table 3.2 imply that

by including all possible combination of vector pairs, the transition fault coverage

reach the s@ coverage in most cases. In a few cases, such as C3540, C5315, S5378

and S38584, the transition fault coverages are slightly lower. However, the differ-

ences are negligible.

The staggering number of exhaustive pairwise vectors in Table 3.2 clearly
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make it infeasible to use all such pairs as transition patterns. To alleviate this high

cost, we present two heuristics to select a considerably smaller set of s@ vectors to

achieve the same transition fault coverage.

3.3 Transition ATPG algorithms

3.3.1 Fault-list-based Extension

This technique is based on a greedy approach, illustrated by the following example.

Let us consider a circuit with four gates (eight s@ faults) and a test set consisting

of 5 vectors V1, V2, V3, V4, V5. The excited and detected s@ faults by the test set

(simulated with fault-dropping) are shown in Table 3.3.

Table 3.3: Dictionary with fault-dropping.

� &$�����)� �+ � �	�(&����+����� �(� � &$�(&����(&����+����� �(�

V1 a-s-1,b-s-0,c-s-0,d-s-1 a-s-1,b-s-0
V2 b-s-1,c-s-1,d-s-1 c-s-1,d-s-1
V3 a-s-0,c-s-0 a-s-0,c-s-0
V4 b-s-1 b-s-1
V5 d-s-0 d-s-0

By applying the test sequence in the given order, only two transition faults

(falling-transition fault and rising-transition fault on gate c) can be detected. How-

ever, we can obviously see that the following vector-pairs can detect additional

transition faults:

1. (V3,V1) detects falling-transition on a;

2. (V1,V3) detects rising-transition on a;

3. (V1,V4) detects falling-transition on b;

4. (V4,V1) detects rising-transition on b;

21



5. (V5,V2) detects falling-transition on d;

6. (V1,V5) detects rising-transition on d;

Including these 6 additional test patterns (instead of all possible 20 pairs) is suffi-

cient to detect all transition faults.

Next, we describe how these 6 test patterns are selected. First, we pick an

undetected transition fault � . Without loss of generality, assume the fault � slow-

to-rise. We look for the first vector that sets node � to logic 0, and then complete

this vector-pair by searching for the first vector that detects the s@-fault � s-a-0. In

the above example, for the fault � slow-to-fall, the first vector that sets � to logic 1

(excite � s@-0) is V3. The first vector in the dictionary that detects � s-a-1 is V1.

Thus the pair (V3, V1) is constructed for the transition fault � slow-to-fall. The

algorithm then picks the next undetected transition fault. The complete procedure

for the fault-list-based approach is outlined below:

1. Assume that we have a s@ test set
����� � 
��	�	�	�
� ����
 . Perform transition

fault simulation using original test set
��� � 
�� ����� � � ��� � ����� �	���	�
� � ��� ��
�� ������
 .

Compute � ������� ��� , the set of undetected transition faults.

2. Compose the useful subset  of the s@ faults implied by � ���!��� ��� as fol-

lows. If
�

slow-to-rise or slow-to-fall fault "#� ���!��� ��� then both
�

s@-0

and s@-1 are included in  .

3. Perform s@ fault simulation using
�

on the s@ faults in  . For each unde-

tected s@ fault in  , record the first vector in T that excites it (greedy initial

vector) and the first vector that detects it (greedy test vector).

4. Iterate through the transition faults in � ���!��� ��� , and for each fault add a test

pair to the transition test set. If the fault is
�

slow-to-rise then add the vector
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pair
��� 	 � ����� where:

� 	 is the greedy initial vector for
�

s@ 1; and
���

is the

greedy final vector for
�

s@ 0. If the fault is
�

slow-to-fall then add the

vector pair
��� 	 � ����� where:

� 	 is the greedy initial vector for
�

s@ 0; and
���

is the greedy final vector for
�

s@ 1.

3.3.2 Priority-based Extension

In the previous fault-list-based algorithm, only one excitation vector and one detec-

tion vector is recorded per fault in the dictionary. Thus, only one vector pair can be

formed for a transition fault. Stated differently, a different vector pair may detect the

same target transition fault and maximize detection of remaining undetected transi-

tion faults at the same time. Table 3.4 shows the excitation and detection dictionary

obtained by simulation without fault-dropping on the same circuit as in Table 3.3.

If we consider all the combinations of test vectors for transition faults in Table 3.4,

Table 3.4: Dictionary without fault-dropping.

� &$�����)� �+ � �	�(&����+����� �(� � &$�(&����(&����+����� �(�

V1 a-s-1,b-s-0,c-s-0,d-s-1 a-s-1,b-s-0
V2 b-s-1,c-s-1,d-s-1 c-s-1,d-s-1
V3 a-s-0,c-s-0 a-s-0,c-s-0
V4 a-s-0,b-s-1 a-s-0,b-s-1
V5 a-s-0,d-s-0 a-s-0,d-s-0

we can see that:

1. (V3,V1), (V4,V1), (V5,V1) detect falling-trans. on a;

2. (V1,V3), (V1,V4), (V1,V5) detect rising-trans. on a;

3. (V1,V4) detects falling-transition on b;

4. (V2,V1), (V4,V1) detect rising-transition on b;
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5. (V5,V2) detects falling-transition on d;

6. (V1,V5), (V2,V5) detect rising-transition on d;

If we select the test patterns intelligently, 4 test patterns (V1,V4), (V1,V5), (V5,V2)

and (V4,V1) suffice to detect all transition faults.

The assumption behind this heuristic is that a pattern which detects a hard-

to-detect fault may detect many other faults as well (some could be easy-to-detect).

The heuristic, named Priority-based extension algorithm, processes the hard-to-

detect faults first. The priority of a transition fault at node � , with respect to the

s@ test set
�

, is defined to be the number of times node � s@-0 and � s@-1 faults

are detected by the test set
�

. The transition fault with the lowest priority is one

that is most difficult to detect and is therefore at the top of the list.

Because fault-simulation without fault-dropping could be expensive, we re-

strict simulation of only those undetected transition faults missed by the original s@

test set. This more complete dictionary also enables us to identify essential vectors

that must be included in the final test set. The priority-based extension algorithm is

described next.

1. Assume that we have a s@ test set
� � � � 
��	���	�
� ����
 . Perform Transition

Fault Simulation on the original test set
��� � 
�� ����� � � ��� � ����� �	���	�
� � ��� ��
�� ������
 .

Record all undetected transition faults � ���!��� � � .

2. Compose the useful subset  of the s@ faults implied by � ���!��� ��� as fol-

lows. If
�

slow-to-rise or slow-to-fall fault " � ���!��� ��� , then both
�

s@-0

and s@-1 are included in  .

3. Perform s@ fault simulation, without fault dropping, using
�

on the s@ faults

in  . For each transition fault in � ���!��� ��� calculate its priority index.
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4. Sort the transition faults in � ���!��� ��� in increasing order of their priority.

The transition fault with the lowest priority is one that is most difficult to

detect and is therefore at the top of the list. It is targeted first.

5. For each target transition fault:

(a) If its priority number is 0, then mark the fault as undetectable (by the

given s@ test).

(b) Else, select a test pair that can detect the fault. If there exists more than

one vector in either the detection list or excitation list, select the test pair

that detects most faults and has not been included in the test set.

Using the example shown in Table 3.4 again, vector
���

is the only test for � s@ 0.

Therefore,
���

must be the second vector in the transition test pattern for the fault �
slow-to-rise. Although each of

��� � � � � ��� can set � to 0, we select
���

as the initial

vector since it detects more s@ fault than the other two. Thus, the pair selected is
� ��� � ���
	 .

3.3.3 Compaction

After using any of the two heuristics we have a set of test-pairs
� �  
��� ��	 � �  � �� 
� 	 �

�	�	��� �  � ��
��� � 	�
 . They were inserted into the test set in the order given above. We

next simulate the test-pairs in the reverse order starting with
�  � ��
��
 � 	 � �  � � � �
 � � ��	 �

�	�	��� �  
��
 ��	 . If a pair
�  	 ��
��
 	 	 does not detect any new faults then it is dropped.

3.4 Experimental Results
The algorithms described in the previous sections have been implemented in C++.

Experimental data are presented for ISCAS85 and full-scan versions of ISCAS89,

on a 1.7GHz Pentium 4 PC with 512 MB of memory, running the Linux Operating
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Table 3.5: Results for Fault-List-Based Extension.
��� � ��� ��� � � � �
	 � � �

����
�� ����
�� ��� � � � � � � ���� ����� � � � � � ��� � � 
 � � � 	 � � ��� � � 
 � � � 	 � � ��� 	 � � 
 �
c880 128 333 0.23 256 0.24 100 0.47
c1355 198 587 0.43 420 0.47 99.77 0.90
c1908 143 580 0.41 437 0.74 99.67 1.15
c3540 202 1057 1.52 796 3.91 96.27 5.43
c5315 157 628 1.98 556 3.00 99.54 4.98
c6288 41 302 1.30 229 1.50 99.19 2.80

S344 31 132 0.04 102 0.03 100 0.07
S382 41 166 0.04 114 0.07 100 0.11
S526 82 285 0.10 224 0.13 99.93 0.23
S832 179 662 0.35 475 0.41 99.20 0.76

S1196 197 686 0.56 521 0.71 99.97 1.27
S1423 97 382 0.34 288 0.48 99.11 0.82
S5378 332 1397 2.98 1109 5.08 98.40 8.06

S35932 78 507 11.34 417 22.70 90.50 34.04
S38417 1207 4654 52.36 3805 100.76 99.66 153.12
S38584 893 4386 68.33 3475 175.62 95.02 243.95

System. Tables 3.5 and 3.6 report the results for the fault-list-based and priority-

based heuristics, respectively. All times given are in CPU seconds. In these two ta-

bles, for each circuit, the number of s@ vectors is given first, followed by the initial

number of transition patterns computed. Next, the runtime for the pre-compression

phase is shown. This time includes the “dictionary computation time”. The next

two columns report the number of transition patterns after compression and the

compression time needed. The total transition coverage and total time are reported

in the final two columns. One additional column (rightmost in Table 3.6) shows

the percentage improvement the priority-based algorithm has over the fault-list-

based algorithm in terms of test data volume. For example, in Table 3.6, the initial

STRATEGATE s@ test set has 197 vectors for fully scanned S1196 circuit, the pre-
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Table 3.6: Results for Priority-based Extension.

� �'� 
�� � ������� �+ ��-&�� � ��� " � ��� " ��������� ���)��� � Improve
%'&�� �(�)�#� *+����� ����� &	� ��
 *+����� ����� &	� ��
 � � ��
�
 � ��� & (%)

c880 128 257 0.25 203 0.23 100 0.48 20.70
c1355 198 461 0.53 336 0.42 99.77 0.97 20.00
c1908 143 440 0.51 375 0.57 99.67 1.08 14.19
c3540 202 755 2.06 629 3.06 96.27 5.12 22.91
c5315 157 421 2.14 396 2.11 99.54 4.25 28.78
c6288 41 268 1.36 190 1.19 99.19 2.55 20.53

S344 31 96 0.05 84 0.04 100 0.09 17.65
S382 41 120 0.05 101 0.08 100 0.13 11.40
S526 82 209 0.09 176 0.12 99.93 0.21 21.43
S832 179 450 0.42 386 0.38 99.20 0.80 18.74
S1196 197 532 0.71 428 0.69 99.97 1.40 17.85
S1423 97 278 0.40 237 0.43 99.11 0.83 17.71
S5378 332 1069 3.40 924 4.29 98.40 7.69 16.68

S35932 78 399 12.53 347 17.15 90.50 29.68 16.79
S38417 1207 3562 58.31 3152 77.86 99.66 136.17 17.16
S38584 893 3288 76.73 2785 132.80 95.02 209.53 19.86

compressed transition pattern count is 532. These set of patterns were computed

in 0.71 seconds from the 197 patterns using the priority-based heuristic. This ini-

tial set of patterns was compressed down to 428 in 0.69s. The total transition fault

coverage was 99.97%.

From the transition fault coverage numbers in Tables 3.5, 3.6 and Table 3.2,

it is clear that the s@ fault coverage serves as the maximum achievable if we restrict

ourselves only to the provided s@ tests.

For most circuits, the results by the priority-based algorithm, prior to com-

paction, are already better than those obtained by the fault-list-based followed by

compaction. As indicated in the right-most column of Table 3.6, the average im-

provement over all benchmark circuits was 18.90%.
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The efficiency of the priority-based heuristic is competitive with the fault-

list based heuristic, even though fault simulation without fault-dropping on selected

faults is needed. We observed that the pre-compaction phase of the priority-based

algorithm takes longer than the fault-list-based algorithm. However, since the com-

paction phase takes about 60% of the time, the total time required by the priority-

based algorithm was often shorter due to a smaller starting test set.

3.5 Comparison With Commercial ATPG
We have shown so far that reusing s@ vectors to compose transition patterns is

effective in composing transition patterns. An important question arises is ”Can this

approach be a substitute for a native-mode transition fault ATPG?” In this section

we compare the priority based heuristic with a state-of-the-art commercial transition

fault ATPG.

The experiment consisted of generating two test sets using the commercial

tool. A compressed s@ test set,
� 
 , and a compressed transition test set,

���
. Then,

we applied the priority-based algorithm (and compression) technique to the s@ test

set
� 
 to obtain another transition test set,

���
. The results are tabulated in Table 3.7.

In Table 3.7, for each circuit, the number of s@ vectors produced by the

commercial ATPG is first given. Next, the number of transition patterns generated,

transition fault coverage, and ATPG time are listed for the commercial ATPG and

our priority-based heuristic alternately. Note that the data storage and the test ap-

plication time will be proportional to twice this pattern count. The final column

reports the improvement in test data volume, as well as test time, is calculated as

follows: �
� � � � � � � 
 ��� 
�� � � � � � �������	� ��� ��
�� ��� �� ��� �
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For three cases the commercial ATPG performs better than our heuristic. For

C5315 the difference is marginal. In the other two cases, C6288 and S35932, the

highly compressed s@ vectors
� 
 leaves very little room for the heuristic to pick

from a variety of vectors. These scenarios are due to the fact that these circuits

are very deep and narrow circuits. If we consider the trend that circuits today are

becoming flatter and broader to meet cycle time goals, s@ tests for newer high per-

formance circuits will not have these characteristics. From that perspective these

two examples can be ignored. In the other cases, there is a substantial improvement

in the test data volume. For S9234, the compression is 50%. The average compres-

sion over all circuits, including those with negative improvement, is 19.59%.

Table 3.7: Comparison with Native Transition ATPG Tool.

� 
 (S@ Pattern Count Coverage Time Data Vol.� � � Vectors)
��� ��� ��� ��� ��� ���

Improve
C1908 129 263 249 99.72 99.72 4.2 2.04 5.32
C2670 116 198 145 78.61 79.26 4.3 4.37 26.77
C3540 179 366 317 82.94 87.62 6.8 10.71 13.39
C5315 124 248 249 96.63 97.05 4.8 9.06 -0.40
C6288 36 90 111 98.95 98.54 3.6 4.28 -23.33
C7552 237 378 322 90.95 91.61 11.0 15.64 14.82
S5378 266 490 316 86.57 87.51 5.3 13.43 35.51
S9234 410 837 412 68.62 70.58 14.7 82.87 50.78

S13207 485 1002 444 80.53 82.29 27.4 70.95 55.69
S15850 464 924 522 84.98 85.76 28.0 101.30 43.51
S35932 75 137 183 90.02 90.33 94.3 61.86 -33.57
S38417 1017 1927 1027 89.92 91.19 115.6 293.30 46.71� 
 : s@ test set generated by commercial ATPG

���
: transition test set generated

by commercial ATPG���
: transition test set generated by our priority-based algorithm using

� 


Columns 5 and 6 give the coverage numbers. In all cases, except for C6288,

our priority heuristic gives a higher fault coverage than the commercial ATPG. For
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C3540 the difference is about 5%. Columns 7 and 8 give the execution times for the

commercial ATPG and our technique. The commercial ATPG was run on a different

machine, and we cannot conclude which is faster. The data presented simply shows

that the run times are comparable.

3.6 Additional Benefits of Reusing s@ Vectors
The approach of constructing enhanced-scan transition patterns using only s@ vec-

tors has several additional benefits. Firstly, prior to using the test-patterns in man-

ufacturing, the transition patterns and the vectors of which it is comprised must be

validated. Since the s@ vectors have already gone through that process, the patterns

in the transition tests computed by our algorithm can skip this validation process.

Note, however, that transition patterns still have to be validated on silicon against

yield loss. Thus, although we have not eliminated pattern validation from the flow,

the overhead has been considerably reduced. From a project execution point of

view this is a tremendous productivity boost.

Secondly, none of our test cases contain any contention since they are fully

synthesized logic. For designs where contention can occur, a tool usually extracts

such contention-causing constraints which are fed to the ATPG tool. The ATPG tool

then generates tests that satisfies these constraints. It is a well-known fact that ATPG

tools work very hard to satisfy such constraints and that adversely affects the run

time, coverage and test set size. Our approach scores over native mode transition

fault ATPG in that it leverages off the “hard work” of the s@ ATPG phase. Since

all the s@ vectors are contention free the transition test set our algorithm generates

is also contention free.

Finally, increasing numbers of IP cores are now shipped with their test sets

as part of their design data. Compressing these test sets to contain the design data
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is becoming increasingly important. If transition tests are added to the test data,

then the test data volume problem is compounded. Since we are using the s@ test

set we need to store only one copy of the vectors that are used several times. The

transition test set can, then, be expressed as a sequence of pointers to these set of

vectors. Thus, with a modest increase over the storage requirement over the s@ test

set we can also ship the transition test set.

Table 3.8: Improvement on Data Storage Requirement
Ckt S Cells S@ Trans S@ Tr Pointer % of S@ % of S@ Factor

Vec. Pat. Str. Str. Str.(ptr) Str.(pat) Red.
C2670 157 116 145 18212 9280 50.96 250 4.91
C5315 178 124 249 22072 15936 72.20 401.61 5.56
C7552 207 237 322 49059 20608 42.01 271.73 6.47
S5378 228 266 316 60648 20224 33.35 237.59 7.13
S9234 250 410 412 102500 26368 25.72 200.98 7.81

S13207 790 485 444 383150 28416 7.42 183.09 24.69
S15850 684 464 522 317376 33408 10.53 225 21.38
S35932 2048 75 183 153600 11712 7.63 488 64
S38417 1742 1017 1027 1771614 65728 3.71 201.97 54.44

Quantitative data is presented in Table 3.8. In this table, the second column

gives the number of scan cells. We assume that the primary inputs and the state

elements are all part of the scan chain. We have only included circuits in which

the number of scan cells exceed 100. Our method will become more effective as

the number of scan cells increase as will become clear shortly. The next column

gives the number of s@ vectors followed by the number of transition patterns. The

transition pattern set assumed is the set computed by the priority-based algorithm,

where each transition pattern consists of two vectors. The fifth column gives the

number of bits of storage required to store the s@ vectors. We next assume that

instead of storing the vectors in the transition patterns we use a pair of 32-bit point-

ers indicating the location of the s@ vectors. The total storage required to store the
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sequence of pointer-pairs representing the transition patterns is shown in column

6. Column 7 gives the percentage increase, above and beyond the s@ pattern stor-

age, required to store the transition pattern pointer set. Note that the incremental

storage requirement varies from about 7.6% to 72.2% with the average being about

28.17%. On the other hand, we could have stored the explicit transition patterns by

storing the vectors in each transition pattern. The incremental storage requirement

is shown in Column 8. The average increase in storage requirement is about 273%.

Finally, Column 9 shows the factor reduction in the incremental storage required

by the two methods. The average reduction is a factor of 21.82 (2182%) with the

highest reduction is a reduction of a factor of 64.

3.7 Summary
We presented two algorithms, Fault-List-based extension and Priority-based exten-

sion, for composing transition patterns from vectors in a s@ test set. The priority-

based algorithm was shown to be superior to the fault-list based algorithm. It was

demonstrated that a high quality transition pattern sets can be obtained, bypassing

the need for a native mode transition fault ATPG. Experimental comparison with a

native mode transition fault ATPG tool showed the proposed heuristics resulted in

20% smaller pattern set while achieving the same or higher transition fault cover-

age. We discussed the additional advantages of reusing the s@ vectors in pattern

validation, constraint handling and reducing design data in the context of IP cores.
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Chapter 4

Efficient Transition Testing Using

Test Chains and Exchange Scan

4.1 Background and Motivation

As we introduced before, transition tests can be applied in three different ways:

Broadside [SAV94], Skewed-Load [SAV92a] and Enhanced-Scan [DS91]. For

broadside testing (also called functional justification), a vector is scanned in and

the functional clock pulsed to create the transition and subsequently capture the

response. For each pattern in broadside testing only one vector is stored in tester

scan memory. The second vector is derived from the first by pulsing the functional

clock. For skewed-load transition testing, an N-bit vector is loaded by shifting in

the first N-1 bits, where N is the scan chain length. The last shift clock is used to

launch the transition. This is followed by a quick capture. For skewed-load testing

also, only one vector is stored for each transition pattern in tester scan memory;

the first vector is a shifted version of the stored vector. Finally, for enhanced-scan
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transition testing, two vectors (V1, V2) are stored in the tester scan memory. The

first scan shift loads V1 into the scan chain. It is then applied to the circuit under

test to initialize it. Next, V2 is scanned in, followed by an apply and subsequently a

capture of the response. During shifting in of V2 it is assumed that the initialization

of V1 is not destroyed. Therefore enhanced-scan transition testing assumes a hold-

scan design [DS91].

Table 4.1: Test Data Volume Comparison

� � � & 
���� &��$� � ���,���$� &��$� �! #"
�������	�)�

c3540 179 366 4.09
c5315 124 248 4
c6288 36 80 5
c7552 237 378 3.19
s13207 485 1002 4.13
s15850 464 924 3.98
s35932 75 137 3.65
s38417 1017 1927 3.79
s38584 727 1361 3.74

Among the three kinds of transition tests, broadside suffers from poor fault

coverage [SP94b]. Since there is no dependency between the two vectors in En-

hanced scan, it can give better coverage than skewed-load transition test. Skewed-

load transition tests also lead to larger test data volume. Compared to stuck-at

tests, the increase in the number of vectors required for enhanced scan to get com-

plete coverage is about 4X (Table 4.1). This data, collected using a state-of-the-art

commercial ATPG tool, shows the number of stuck-at vectors and the number of

enhanced scan transition patterns for each circuit. Note that each transition pattern

consists of two vectors. For skewedload transition test, it has been observed that the

data volume for an ASIC has an increase of 5.9X [HBP01].

A drawback of enhanced-scan testing is that it requires hold-scan scan-cells.
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However, in microprocessors and other high performance circuits that require cus-

tom design, such cells are used for other reasons. In custom designs, the circuit

often is not fully decoded, hold scan cells are used to prevent contention in the data

being shifted, as well as preventing excessive power dissipation in the circuit during

the scan shift phase. Furthermore, if hold-scan cells are used, the failing parts in

which only the scan logic failed can often be retrieved; thus enhancing, to some

extent, the diagnostic capability associated with scan DFT. In this chapter, we will

consider only enhanced-scan transition tests.

A number of techniques on reducing test data volume and test application

time for single cycle scan-tests have been presented in the literature [KBB � 01,

HP99, KOE91, CC01, LCH98, DT00]. These methods assume that only 5-10% of

the bits are fully specified. Unspecified bits are filled to detect the easy to detect

faults. Different codes to compress the information in the tester and decompressing

them on chip [KBB � 01, CC01, DT00] or using partitioning and applying similar

patterns to the different partitions [HP99, LCH98] have been proposed. The tech-

niques proposed here compliments the work on compressing individual vectors.

In our previous work [LHCT03], we presented two algorithms for comput-

ing transition test patterns from generated s@ test vectors, which can reduce the test

set size by 20%. Nevertheless, there has not been much work on addressing the ex-

plosion in data and application time for transition tests. To tackle this problem, we

first propose novel techniques to generate effective transition test chains based on

stuck-at vectors, thus the need for a separate transition ATPG is eliminated. Next,

we propose methods to reduce the transition test data volume and test application

time. Our optimization techniques consider factors across test patterns for transition

tests. The first technique uses the ATE repeat option to reduce the test data volume

and requires the use of transition test chains, rather than randomly apply the indi-
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vidual transition test patterns. We describe the transition test chains and present a

novel algorithm for computing such chains. Experimental results show an average

data volume reduction of 46.5%, when compared with the conventional enhanced

scan transition test data volume computed by COM, a commercial ATPG tool. The

above technique does not necessarily decrease test application time. To reduce test

application time, a new DFT technique called exchange scan is proposed . Com-

bining exchange scan with transition test chains reduces both test application time

and test data volume by 46.5%, when compared with a conventional transition test

set computed by COM.

Nevertheless, one of the drawbacks of scan-based delay tests is possible

yield loss due to overtesting. In [REA01], the author showed that scan-based test-

ing may fail a chip due to the delay faults that do not affect the normal opera-

tion, and thus it is unnecessary to target those functionally unsensitizable faults.

In [LKC00a, LKC00c], the authors also addressed the impact of delay defects on

the functionally untestable paths on the circuit performance. Moreover, a scan test

pattern, though derived from targeting functionally testable transition faults, can

incidentally detect functionally untestable faults if the starting state is an arbitrary

state (could be an unreachable state). In this chapter, we use a low-cost implica-

tion engine to compute the functionally untestable faults and address the problem

of overtesting in our graph-formulated transition ATPG algorithm.

The rest of the chapter is organized as follows. In Section 4.2, the ATE

model we use is described. Section 4.2.1 proposes a novel transition test chain for-

mulation, which is mapped into a weighted transition pattern graph traversal prob-

lem. A new DFT technique to reduce test application time by reducing the number

of scan loads is presented in Section 4.3 . Section 4.4 describes a novel method

to address the problem of incidentally overtesting of functionally untestable faults
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in our ATPG algorithm. Section 4.5 presents a summary of all the experimental

results. Finally Section 4.6 concludes the chapter.

4.2 ATE Model

Control

Memory


Scan Memory


Response

Comparator


Channel 1


Channel 2


Channel N


...
 CUT


TESTER


Figure 4.1: Tester Memory Model

Figure 4.1 is an abstraction of the tester model we use. ATE storage con-

sists of two parts: scan and control memory. Scan memory is divided into sev-

eral channels. Each channel consists of three bits. For each clock cycle of the

scan shift operation, the scan memory contains the bit to be scanned in, the ex-

pected response bit from the circuit under test (CUT) and an indication of whether

this bit of the response is to be masked or not, indicated by M or U in the figure

4.2. Figure 4.2(a) shows the data stored for a single scan channel for the test set
�
V1,V2,V3,V4,V5,V6,V7,V8,V9,V10



, with Rj being the expected response for

Vj. The control memory controls the shift and the comparison operation. The scan

memory depth required is (N+1)*S bits, for a test set of size N and scan length S.

The enhanced scan transition test set in Table 4.2 consists of 6 transition test
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V1    V2    V3    V4    V5    V6    V7    V8    V9    V10


R1    R2    R3    R4    R5    R6    R7    R8    R9    R10


    M      U      U      U      U      U      U      U     U       U        U


    U: Selective bit Masking; M: All bits are masked


(a) Stuck-at Vectors


V1    V2    V2    V3    V3    V4    V3    V5    V1    V3


                      R2            R3            R4            R5               R3


    M      M      U      M      U      M      U      M     U      M       U


(b) Enhanced Transition Tests


     V1    V2    V3    V4    V1    V3    V5


                      R2    R3    R4    R1    R3    R5


(c) ATE Repeat


Figure 4.2: ATE Storage Model

Table 4.2: Enhanced Scan Transition Test Set Example

� &$�����)��� � &$�����)��� �+&�� "
�)���)&

V1 V2 R2
V2 V3 R3
V3 V4 R4
V3 V5 R5
V1 V3 R3*
V4 V3 R3**

patterns. Each pattern consists of a pair of vectors and the expected response to the

test vector. The first pattern in our example consists of the pair (V1, V2) and the

response R2 to V2. Storage of the test data in the scan memory is shown in Figure

4.2(b). Storage depth required is N*2*S+N*S bits. The control sequence for this

test set shown in Table 4.3 is very repetitive and stored in the tester scan memory.

Row 1 of the table states that V1 is scanned in and applied to the CUT. Row 2 states

that V2 is scanned in, applied to the CUT, and the response R2 captured. Row 3
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Table 4.3: Control Sequence of Transition Test

(i)Shift in V1;(ii)Apply;
(i)Shift in V2;(ii)Apply;(iii)Capture;

(i)Shift in V2;Shift Out and Compare R2;(ii)Apply;
(i)Shift in V3;(ii)Apply;(iii)Capture;

(i)Shift in V3;Shift Out and Compare R3;(ii)Apply;
(i)Shift in V4;(ii)Apply;(iii)Capture;

(i)Shift in V3;Shift Out and Compare R4;(ii)Apply;
(i)Shift in V5;(ii)Apply;(iii)Capture;

(i)Shift in V1;Shift Out and Compare R5;(ii)Apply;
(i)Shift in V3;(ii)Apply;(iii)Capture;

(i)Shift in V4;Shift Out and Compare R3*;(ii)Apply;
(i)Shift in V3;(ii)Apply;(iii)Capture;

(i)Shift out and compare R3**;

states that the first vector of the next vector pair, i.e. V2, is scanned in while the

response R2 of the previous test pattern is scanned out and compared against the

expected response. Once the scan operation is complete, the new vector is applied

to the CUT. The rest of the entries can be similarly interpreted.

4.2.1 ATE Repeat and Transition Test Chains

4.2.2 ATE Repeat

There is considerable redundancy in the information stored in the tester. In Figure

4.2(b), V2, V3 are used several times in the test sequence. Ideally, one copy of the

information should suffice. However, storing one copy of a vector and reusing it

in any random order requires the ATE to index into random locations in the scan

memory, which is currently not available. Limited reuse of the information stored

however is possible. In Figure 4.2(b), two copies of V2 are stored in consecutive

locations in the scan memory. It is possible to store just one copy of V2 and scan in
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V2 as often as possible during consecutive scan cycles. Similarly, we can replace

two copies of V3 in locations 4, 5, from the left of the scan memory in Figure 4.2(b),

with just one copy of V3. Further reduction of the number of copies of V3 is not

possible. Thus, we store the sequence
�
V1, V2*, V3*, V4, V3, V5, V1, V3



and

repeatedly scan in the vectors marked with the flag *. Information about vectors

that needs to be scanned in multiple times is stored in control memory. Thus, 8

instead of 10 vectors need to be stored.

In the above example, the scan storage requirement was reduced at a price.

Since vectors that are scanned in repeatedly do not form a regular pattern, the con-

trol memory requirement can increase drastically. To avoid such an increase in

control memory we impose a restriction that, except for the first vector and last vec-

tor stored in the scan memory, every vector is scanned in exactly twice. In Figure

4.2(c), the sequence
�
V1, V2, V3, V4, V1, V3, V5



is stored. Assuming that all

but the first and last vectors are scanned in twice, the set of transition test patterns

applied is (V1, V2,), (V2, V3), (V3, V4), (V4, V1), (V1, V3,), (V3, V5). This set of

patterns includes all the test patterns of Figure 4.2(a) as well as (V4, V1). Thus, by

storing only 7 vectors (instead of 10 vectors), all the transition tests can be applied.

For this example, not only is control memory requirement lower but the number of

vectors stored is also reduced. Sequences, in which all but the first and last vectors

are scanned in twice are defined to be transition test chains.

4.2.3 Transition Test Chains via Weighted Transition Graph

Computing transition test chains is different from computing a set of transition test

patterns as is conventionally done. A novel algorithm, called weighted transition

graph algorithm, to compute such chains is discussed next.
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The algorithm constructs transition test chains from a given stuck-at test set.

Instead of computing a set of vector-pairs and chain them together as alluded to in

the above examples, the problem is mapped into a graph traversal problem. The

algorithm builds a weighted directed graph called the weighted transition-pattern

graph. In this graph, each node represents a vector in the stuck-at test set; a directed

edge from node Vi to Vj denotes the transition test pattern (Vi, Vj) and its weight

indicates the number of transition faults detected by (Vi, Vj). Directed edges may

potentially exist between every node pair, resulting in a large (possibly complete)

graph. In order to reduce the time required to construct the graph, only the subset

of the faults missed by the original stuck-at test set are considered. The graph

construction procedure is discussed next.

We start with the stuck-at test set T=
� � 
�� � � ����
 .

1. Perform transition fault simulation using the stuck-at test set as a transition

test set
�
(
� 
 , ��� ), (

���
,
���

)...(
��� ��
 , ��� )



to compute undet, the set of unde-

tected transition faults.

2. Deduce the subset U of the stuck-at faults implied by undet as follows. If X

slow-to-rise or slow-to-fall fault " undet , then both X stuck-at-0 and stuck-

at-1 are included in U.

3. Perform stuck-at fault simulation, without fault dropping, using the stuck-at

test set T on the stuck-at faults in U. For each stuck-at fault f in U, record the

vectors in T that excite f and the vectors that detect f. Also, for each vector,

the faults excited and detected by it are recorded.

4. The weighted directed graph contains a node corresponding to each of the

stuck-at tests in T. The directed edge, from
� 	 to

���
, is inserted if the cor-

responding test pattern (
� 	 � � � ) detects at least one transition fault in undet.
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The weight of (
� 	 � � � ) is the number of transition faults in undet detected by

(
� 	 � � � ).

For example, consider a circuit with 5 gates (10 stuck-at faults) and a stuck-at test

set consisting of 4 vectors V1, V2, V3, and V4. The excitation and detection dic-

tionary obtained by simulation without fault dropping are as shown in Table 4.4.

Assuming the test set order to be
�
V1, V2, V3, V4



, only 3 transition faults

(slow-to-fall at c, e and slow-to-rise at c) are detected. However, using Table 4.4,

we can make the following observations by combining non-consecutive vectors:

(V1, V3) detects a slow-to-fall; (V3, V1) detects a slow-to-rise; (V1, V4) detects

d slow-to-fall; (V4, V2) detects d slow-to-rise; (V4, V1) detects a slow-to-rise, b

slow-to-fall; and (V2, V4) detects b slow-to-rise, e slow-to-rise and d slow-to-fall.

This results in the transition-pattern graph of Figure 4.4 .

Table 4.4: Fault Dictionary without Fault-Dropping

� &$���(����� �+ �����(&�� �+����� �-� � &��-&$���-& � �!�,� � �-�

V1 a-s-0,b-s-1,c-s-1,d-s-0,e-s-0 a-s-0,b-s-1
V2 b-s-1,c-s-0,d-s-0,e-s-1 c-s-0,d-s-0,e-s-1
V3 a-s-1,c-s-1, a-s-1,c-s-1
V4 a-s-1,b-s-0,d-s-1,e-s-0 b-s-0,d-s-1,e-s-0

Unlike general graphs, this weighted transition graph has a specific property,

which formulates the following theorem.

Theorem 1 Faults detected by pattern (
� 	 , ��� ) and faults detected by pattern (Vj,

Vk) are mutually exclusive.

Proof: We prove this by contradiction. Without loss of generality, consider

fault f slow-to-falldetected by (
� 	 , ���

). Thus,
� 	 excites f s-a-0(sets line f to 1)
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GENERIC WEIGHTED TRANSITION GRAPH ALGORITHM


  construct the weighted transition pattern graph;

  initialize P to T={T1...Tn}

  while(TFC<100%) &&(iteration num<MAX))


BEGIN

              identify an edge(Vi,Vj) with the heaviest weight;

              append vectors Vi,Vj to set set P;

              for all the edges starting from Vj


BEGIN

                          look for the edge (Vj, Vk) having the heaviest weight;

                          append vector Vk to the test set P;


END

END

Figure 4.3: Generic Weighted Transition Graph Algorithm

and
���

detects f s-a-1. Assume (
���

,
���

) also detects f slow-to-fall. Then, the initial

vector
���

must set line f to 1, which is a contradicts.

An Euler trail in the transition-pattern graph traverses all the edges in the

graph exactly once. By inserting a minimal number of edges to the graph, an Euler

trail that traverses all edges would tempt us to think that this is the best test chain.

However, this actually leads only to a sub-optimal solution. Traversing edge (Vi,Vj)

is equivalent to selecting test (Vi,Vj). Once edge (Vi,Vj) is traversed, i.e test (Vi, Vj)

is selected, it detects a number of transition faults. This alters the weights on other

edges and even removes some of the edges. Per Theorem 1, edges whose weights

do not change are those originating from Vj. To improve the solution, the edge

weights should be updated after traversing each edge. A preliminary version of the

algorithm is outlined in Figure 4.3 where P is the transition test chain computed by

the algorithm from the given stuck-at test set T.

The idea behind this algorithm is as follows: we are looking for a smallest
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test sequence that can cover all the detectable faults by traversing the weighted

transition pattern graph. In a traditional weighted graph, traversing any edge in

the graph will not affect the weight on other edges; therefore, an Euler trail, which

traverse each edge exactly once, will be the optimum solution. But in our case,

traversing any edge in the weighted transition pattern graph may result in a number

of transition faults be detected and removed from the fault dictionary. Thus, the

weight on other edges, which also detect these faults, will be altered and must be

updated by simulation.

For example, in the original weighted transition pattern graph on the left of

Figure 4.4, (V2,V4,V1) is the heaviest-weight test chain of length 3. After travers-

ing this chain, 5 transition faults (a slow-to-rise, b slow-to-rise, b slow-to-fall, d

slow-to-fall and e slow-to rise) have been detected. The updated graph is shown on

the right of Figure 4.4. It should be noted that in addition to removing the edges

(V2,V4) and (V4,V1), other two edges ((V1,V4) and (V3,V1)) are also removed

from the graph. This is because the fault (d slow-to-fall), which can be detected

by (V1,V4) has been detected by selecting the test chain (V2,V4,V1). Therefore,

the edge (V1,V4) can be removed from the weighted pattern graph because it has

no contribution to the future selection of edges. Similar idea can be applied on the

edge (V3,V1) as well. Finally, all the 7 undetected faults in Table 4.4 are detected

with the test chain
�
V2, V4, V1, V3, V4, V2



.

V2

V4V3

V1

2
1

1

V3

V1 V2

V4

1 1 11 3

Figure 4.4: Weighted Transition-Pattern Graph Example
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Several optimizations were applied to the generic version of the algorithm

to improve the results. First, we investigated the impact of different lengths of test

chain on the number of faults detected. Instead of considering one edge at a time,

we use Theorem 1 to inspect path segments of length 3. This reduces the amount

of simulation required and a transition test chain is generated by incrementally con-

catenating the vector-chains of length 3. While this solution is better than simply

concatenating vector pairs for each of the remaining undetected transition faults, it

still may not be optimal. When the test chain length increases beyond 3, the differ-

ence between the actual number of transition faults detected by the chain and the

sum of edge weights in the chain can increase. This difference determines whether

it is worthwhile to use continue extending the chains. Thus, using longer chains

reduces the number of graph updates (hence reducing run time of the algorithm),

but it will increase the size of the final solution. Our experiments suggest that the

chain lengths of 3 or 4 give the best results.

Secondly, expanding on the essential test definition for stuck-at fault from

[HP99], we define an essential vector for transition faults to be any test vector that

excites (or detects) at least one transition fault that is not excited (or detected) by any

other test vector in the test set. All essential vectors must occur in the transition test

chain at least once. We include essential vectors early in the chaining process. The

transition test chain generation process is divided into two phases by constructing

two weighted transition pattern graphs.

1. Identify all essential vectors, generate the transition-pattern graph using only

essential vectors and construct the test chains only with the essential vectors

in the graph. Append that to the initial transition test chain P in the generic

version of the weighted transition graph algorithm.
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2. Reduce the number of faults by dropping faults detected in the first step.

Generate the transition-pattern graph for the remaining faults and extend the

partial transition test chain from previous step as described in step 3 of the

generic weighted transition graph algorithm.

The number of edges in the second step of the modified algorithm is signif-

icantly reduced, because most of the edges incident on the essential vectors have

been traversed in the previous step and thus removed.

During the test pattern generation procedure, some of the faults detected

by the earlier test vectors may also be detected by the test patterns generated later.

Therefore, vectors added early in our transition test set might become redundant. To

identify such redundant patterns, we perform a reverse-order pair-wise compaction.

After (  
 ,  � ,  � ), (  � ,  �� ,  �� ), ... , (  � � � ,  � ��
 ,  � ) are generated, they are

appended to the original stuck-at test set in that order. The test patterns (  � ��
 ,
 � ), (  � � � ,  � ��
 ),..., (  
 ,  � ) are simulated in the reverse order in which it was

generated. If neither (  	���
 ,  	 ), (  	 ,  	 � 
 ) detects any additional fault, then  	 is

redundant and can be eliminated. Note that eliminating a vector  	 will give rise to

a new transition test pattern (  �	���
 ,  	 � 
 ); therefore, we follow this by performing

a forward-order pair-wise compaction step to further reduce the size of the test

sequence.

4.3 Exchange Scan

We saw that by using transition test chains and ATE repeat can reduce test data

storage. Data presented in experimental result will show the average reduction to

be about 46.5%. However, test application time can sometimes increase due to
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repeating on every vector in the chain. To reduce test application time, while still

retaining the improvement in data storage, we propose a new DFT technique.

Instead of using the ATE repeat option to re-use the vector, an low overhead

alternative is possible in which each vector is only scanned in once. Reducing scan-

in operations reduces test application time. The net result is a reduction in both the

data storage requirement and the test application time.

The block diagram of a conventional hold-scan system is shown in Figure

4.5. The scan cells, each of which consists of two parts: System Latch and Shadow

MSFF are chained together to form two related registers: SYSTEM REGISTER

and SHADOW REGISTER. During normal operation, the SYSTEM REGISTER

is in use and the SHADOW REGISTER does not play any role. For scan testing

options, three scan operations– SCAN SHIFT, SCAN LOAD and SCAN STORE,

are supported.

LOAD
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A_CLK


B_CLK


CLK


DATA


STORE


Shadow

MSFF


System
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SOUT


Q
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B_CLK
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B_CLK


CLK


DATA
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System
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Q


Shadow

Register


System

Register


SOUT
 SOUT


Figure 4.5: Block Diagram of Hold-Scan System

Assume the scan cell implementation of Figure 4.6. For SCAN SHIFT, the

A CLK and B CLK are pulsed so that data passes from the SI to the SOUT. For

SCAN STORE, the STORE signal is pulsed to transfer the data from SOUT to Q.

The content of SHADOW REGISTER is transferred to the SYSTEM REGISTER.

In SCAN LOAD the contents of the SYSTEM REGISTER is transferred to the
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Figure 4.6: Hold Scan Cell and Exchange Scan Timing

SHADOW REGISTER. Pulsing LOAD transfers data from Q to AOUT. Pulsing

the BCLK to transfer the data from AL to BL.

The new operation SCAN EXCHANGE exchanges the data between the

SHADOW and the SYSTEM registers, without destroying either of them. Pulsing

LOAD transfers the contents of SL to AL. Pulsing STORE transfers the contents of

BL to SL. Pulsing B CLK to transfer the content of AL to BL, follows this. The

corresponding timing diagram is shown in Figure 4.6 (b). No additional hardware

or signal is needed to support the exchange operation. It may require the global scan

controller to be modified slightly to realize the exchange operation. The exchange

operation takes about three clock cycles.

SCAN EXCHANGE, for the transition test chain
�
V1, V2, V3, V4



is used

as follows. Test-pairs applied are: (V1, V2), (V2, V3), (V3, V4). The expected

response on application of V2 is R2, V3 is R3 and V4 is R4. The sequence of oper-

ations, without exchange scan, is shown in the first column of Figure 4.7. Capture

R2 implies that the response of the CUT on application of V2 is latched on to the

SYSTEM REGISTER. Scan in V2, Scan Out R2 implies SCAN SHIFT wherein
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WITHOUT EXCHANGE
 WITH EXCHANGE


Scan in V1


Scan in V2


Scan in V1


Scan in V2


Store V1
 Store V1


Store V2
 Store V2


Capture R2
 Capture R2


Load R2
 Exchange (R2, V2)


Scan in V3, Scan out R2
Scan in V2, Scan out R2


Store V2
 Store V3


Scan in V3
 Capture R3


Store V3


Capture R3


Load R3


Exchange (R3, V3)


Scan in V4, Scan out R3


Scan in V3, Scan out R3


Store V3


Scan in V4


Store V4


Capture R4


Scan in V4, Scan out R4


Store V4


Capture R4


Exchange (R4, V4)


Scan in V5, Scan out R4


Figure 4.7: Scan Operation with/without exchange

V2 is scanned out and response of the CUT, from the previous pattern is compared

to R2.

The second column of Figure 4.7 shows the sequence of operations using

SCAN EXCHANGE. Once V2 is loaded into the SHADOW REGISTER, the sub-

sequent store and capture operations do not destroy the contents of the SHADOW

register. So, the SCAN LOAD operation that destroys the contents of the SHADOW

REGISTER is replaced by the SCAN EXCHANGE operation. It exchanges the

contents of the SHADOW REGISTER and the SYSTEM REGISTER. Thus, the

captured response is transferred to the SHADOW REGISTER and V2 is applied

to the circuit under test as the initial vector for the next test pair. We can there-

fore skip the sequence of operations that rescans V2 and stores it. In addition,

the SCAN SHIFT of the response from V2, i.e. R2, can now be merged with the

49



SCAN SHIFT of the final vector of the next pattern V3. The net effect of this is that

we can replace an entire scan operation with a 3-cycle SCAN EXCHANGE oper-

ation. Considering that the SCAN SHIFT operation may take 1000 or more clock

cycles this overhead of the SCAN EXCHANGE operation is negligible and will

be neglected from our calculations. Note that transition test chains, but not ATE

repeat capability in the testers, is required to realize the gains of the exchange scan

operation. If the ATE Repeat capability is available, each of the vectors that are

stored can be compressed, as discussed in [Keller 2001], and the benefits of transi-

tion test chains can be realized using exchange scan. Our experimental result show

that both test data volume and test application time decrease by 46.5%, compared

to a commercial tool.

4.4 Constrained ATPG to Minimize Overtesting

In this section, we present a novel algorithm to address the possible yield loss due to

overtesting of functionally untestable faults in Enhanced-scan testing. A transition

fault is functionally untestable if either launching of the transition or the propaga-

tion of its effect is impossible in the functional mode, due to constraints imposed by

the circuit. Such constraints include the requirement for an illegal/unreachable state

in the test pattern, or the two state combination in the enhanced-scan pattern is func-

tionally impossible. Because the enhanced-scan model assumes total independence

between the two vectors in the test pattern, some functionally untestable transition

faults may become detected. Figure 4.8 illustrates the scenario. Since an enhanced-

scan pattern consists of (State1, V1, State2, V2), if either (1) State1/State2 is illegal

or (2) the State1/State2 pair is not a valid state transition combination, the transition

pattern may detect some of the functionally untestable faults. To avoid detection of
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such functionally untestable faults, we must make sure that these two scenarios do

not arise.

X1 X2

State 1

State 2

PI1

PO1 PO2

PI2

Figure 4.8: Arbitrary starting states in Enhanced Scan

We first describe a low-cost implication based functionally-untestable-fault

identification method without involving any sequential ATPG. Then we try to mini-

mize the overtesting of these functionally untestable faults in our graph-formulated

ATPG algorithm described in section 4.2.1.

In general, identifying functionally untestable fault in sequential circuits is

of the same complexity as sequential ATPG. In [HSI02], a method for identify-

ing untestable stuck-at faults in sequential circuits by maximizing local conflicting

value assignments has been proposed. The technique first computes a large number

of logic implications across multiple time-frames and stores them in an implication

graph. Then the algorithm identifies impossible combinations of value assignment

locally around each gate in the circuit and those redundant stuck-at faults requiring

such impossibilities.

For identifying functionally untestable transition faults, in addition to search-

ing for the impossibilities locally around each gate, we also check the excitability

of the initial value in the previous time frame. In other words, if opposing values

on a signal in two consecutive time frames are not possible, we would know that
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no transition can be launched on that signal in the functional mode. Furthermore, if

the corresponding s@ fault becomes unobservable due to the imposed constraints,

the transition fault also would be unobservable. In employing this technique, we

can identify a large set of untestable transition faults in the circuit.

The identified functionally untestable transition faults are mapped onto the

graph traversal problem. We build the weighted transition pattern graph for the

given stuck-at test set as before. Again, in the graph, each node represents a vec-

tor in the stuck-at test set and a directed edge from Vi to Vj denotes the transition

test pattern (Vi,Vj). To address the problem of overtesting functionally untestable

faults, each edge in the weighted transition pattern graph has two weights: W1 in-

dicates the number of functionally untestable faults detected by test pattern (Vi,Vj)

and W2 represents the number of functionally testable faults detected by the pat-

tern. Therefore, our target is to achieve the highest transition fault coverage, while

minimizing the overtesting of functionally untestable faults.

The heuristic we used to minimize the overtesting is presented next. Assume

the stuck-at test set T=
� 
 ... � � is given.

1. Identify the functionally untestable fault set R using the transition implication

tool.

2. Perform transition fault simulation using the stuck-at test set as a transition

test set
�
(
� 
 , ��� ), (

���
,
���

)...(
��� ��
 , ��� )



to compute undet, the set of unde-

tected transition faults.

3. Deduce the subset U of the stuck-at faults implied by undet as follows. If X

slow-to-rise or slow-to-fall fault " undet , then both X stuck-at-0 and stuck-

at-1 are included in U.
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4. Categorize the transition faults in U into two parts:  
 =U
�

R, standing for the

functionally untestable fault set in U and  � =U-  
 standing for the function-

ally testable fault set in U.

5. Build the fault dictionary for  
 and  � respectively, using the fault simu-

lation without fault-dropping. Generate the weighted pattern graph with � 

and � � on each edge.

6. Compute the weight � on each edge, using the formula � =F( � 
 , � � ,
threshold). For small circuits, we set the threshold to Zero and for bigger

circuits, we predetermined the threshold as a small fraction of the number of

functionally untestable faults in the circuit.

7. Greedily construct transition test chains with the maximum � and append

the transition test chains to the original stuck-at test set T.

Function F is defined as follows:

� �
��� �� �

� 
�� 
 if � 
�� �
	 � � ��	 � � ��
otherwise

Let us look at the example in Section 4.2.1 again. Suppose the transition

fault, � slow-to-rise, is a functionally untestable fault, then the weighted pattern

graph in Figure 4.4 will be modified to Figure 4.9. Again, recall that every vertex

in the figure is a test vector, there exists an edge between two vertex if they detect

at least one fault. Different from the previous example, every edge now has two

weights, namely � 
 and � � , which are the number of functionally testable faults

and functionally untestable faults detected by the pair of test vectors, respectively.

So, from the fault dictionary, we can see that (V4,V1) detect one functional testable

faults (b slow-to-fall) and one functionally untestable fault (a slow-to-rise). There-
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fore, the weights on edge (V4,V1) are � 
 =1 and � � =1. Similarly, (V3,V1) detects

only a slow-to-rise, which is a functionally untestable fault; correspondingly, the

weights on edge (V3,V1) are � 
 =1 and � � =0.

Therefore, selecting a transition test chain no longer depends on merely the

total number of transition faults it can potentially detect. We must distinguish the

number of functionally testable faults and number of functionally testable faults

each chain can detect. For instance, consider the transition test chain
�
V2, V4,

V1, V3, V4, V2



generated in Section 4.2.1; although all the functionally testable

faults will be detected, the functionally untestable fault ( a slow-to rise) will also be

detected. To avoid the overtesting of this functionally untestable fault, we generate

the transition test chain by avoiding traversal of the edges containing non-zero- � 
 .
In doing so, the new transition test chain

�
V2,V4,V2,V1,V3



(that avoids traversing

non-zero � 
 edges) will now only detect 5 out of the 6 remaining functionally

testable faults because all the vectors that can detect b slow-to-fall also detect the

functionally untestable fault a slow-to-rise. Consequently, a slight drop in fault

coverage of the functionally testable faults may result.

We can also relax this condition of avoiding all non-zero � 
 edges to in-

crease coverage of functionally testable faults. In essence, we set a threshold on

� 
 such that we will still consider some non-zero � 
 edges, but we make sure that

detection of such untestable faults is bounded by the threshold value.

4.5 Experimental Results

The weighted transition graph algorithm, with all the optimizations described above,

was implemented in C. Experimental data are presented for ISCAS85 and full-scan

versions of ISCAS89 benchmarks, on a 1.7GHz Pentium 4 with 512 MB of mem-
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Figure 4.9: Weighted Pattern Graph with two Weights

ory, running the Linux Operating System.

Table 4.5: Results with different chain Lengths

2 3 4 5 6 7� � � ��� � � �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
�

AC
s344 38 38 64 64 90 72 111 89 143 89 164 103
s382 24 24 43 43 63 44 75 56 92 61 111 61
s832 60 60 87 87 114 89 136 95 158 95 180 103

s1196 47 47 78 78 116 93 146 105 177 105 208 119
s1423 36 36 60 60 79 79 106 95 129 118 153 124
s5378 59 59 103 103 149 142 190 144 235 172 284 176

s35932 1072 1072 1175 1175 1270 1247 1382 1261 1475 1312 1564 1334
s38417 132 132 190 190 274 249 380 285 439 296 500 319

In Table 4.5, results for full-scan version of ISCAS89 circuits, with different

chain lengths, are presented. For each benchmark, the ideal (ID), given by the sum

of the edge weights, and actual (AC) faults detected by the chains are shown. The

difference between the ideal (ID) and actual (AC) increases with the chain length.

For example, for circuit s5378, when the chain length is 2, the ideal and actual

numbers of detected transition faults are the same. Likewise, when the chain length

is increased to 3, they are still equal as explained by the proposed Theorem. When

we increase the chain length beyond 3, the actual number of detected transition

faults start to differ, as some of the faults detected by this last chain segment may
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be detected by the first 2 pairs.

Table 4.6: Results with/without Essential Vectors

S@ Without essential vectors with essential vectors� � � ��� � � Set
��� � � � ��� 
�� � � � 
 � ��� � ��� � � � ��� 
�� � � � 
 � TFC� � ��� � � � ��� � � � 	 ��� 	 � � ��� � � � ��� � � � 	 (%)

c1355 198 928 285 3.51 99.77 915 270 2.82 99.77
c1908 143 918 318 4.57 99.67 966 298 3.32 99.67
c3540 202 1222 515 25.43 96.27 1181 514 22.06 96.27
c5315 157 816 342 11.80 99.54 762 313 9.79 99.54
c6288 141 310 122 5.60 99.19 334 120 5.70 99.19
s344 31 135 63 0.37 100 207 64 0.37 100
s832 179 988 310 4.36 99.20 937 292 2.78 99.20

s1196 197 1004 362 5.24 99.97 1022 358 4.38 99.97
s1423 97 566 186 2.25 99.11 528 177 2.09 99.11
s5378 332 1672 722 35.73 98.40 1685 722 29.76 98.40

s35932 78 542 196 133.13 90.50 633 197 133.01 90.50
s38417 1207 5142 2682 1073.03 99.66 5208 2686 858.85 99.66

Table 4.6 presents the results of the weighted transition-graph algorithm with

and without using essential vectors. In Table 4.6, column 2 gives the number of

stuck-at vectors in the original STRATEGATE test set, followed by the results for

our algorithm without using essential vectors. The final four columns show the

results when essential vectors are used. For each approach, the number of transition

vectors produced is shown first. Next, the number of compacted test vectors and

its transition fault coverage are shown. Note that the compaction step achieves

considerable reduction without losing fault coverage. The transition fault coverage

achieved with or without essential vectors are the same, as indicated in column 6

and column 10 of the table; only the test set sizes are different in the two approaches.

In most cases, the use of essential vectors yields smaller test sets. However, because

this is a greedy heuristic, optimality is not guaranteed. The execution time with
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essential vectors is also generally shorter due to the quick elimination of a large

number of faults detected by the essential vectors. The extra computation needed

in s38417 was due to the lack of trimming in the weighted transition pattern graph.

Because our target was to show the proof of concept that stuck-at vectors can be

chained through the proposed WTG, we did not explicitly target reduction in the

execution time.

4.5.1 Experimental Results for ATE Repeat

Table 4.7: ATE Repeat vs. COM

Storage TF COV CPU Time IMPROVEMENTS�����
COM WT GR

����� �	� 
�� �����
WT GR ��
���� Time

��� � ��� �
�

�
�

�
c1908 177 526 353 346 99.7 99.72 4.2 3.33 3.47 32.89 -34.22
c2670 167 396 185 184 78.6 79.26 4.3 9.25 9.99 53.28 6.57
c3540 247 732 410 419 82.9 87.62 6.8 19.45 20.11 43.99 -12.02
c5315 213 496 310 323 96.6 97.05 4.8 10.20 10.77 37.50 -25.00
c6288 47 180 130 118 99 98.54 3.6 3.72 3.62 27.77 -44.44
c7552 348 756 428 431 91 91.61 11 28.34 28.21 43.38 -13.23
s5378 391 980 455 464 86.6 87.51 5.3 37.66 37.76 53.57 7.14
s9234 630 1674 644 646 68.6 70.58 14.7 319.18 324.20 61.53 23.06
s13207 662 2004 681 679 80.5 82.29 27.4 292.89 295.30 66.02 32.06
s15850 641 1848 729 749 85 85.76 28 350.00 358.58 60.55 21.10
s35932 81 274 224 209 90 90.33 94.3 87.56 86.30 18.29 -63.50
s38417 1449 3854 1555 1547 89.9 91.19 116 1416.82 1406.83 59.65 19.30

In Table 4.7 we compare our results with results using COM, a commercial

ATPG tool. We first tabulate the data for the storage required (STORAGE). Both

the size of the stuck-at test set and the number of transition test vectors for COM are

presented. These were generated using the dynamic compaction option of COM.

Thus, for C1908 we need to store a total of 526 vectors. WT GR used the stuck-at

test set generated using COM without compaction. The next two columns show

the transition test chain lengths obtained using the proposed algorithm, with chain

length 3 and 4, respectively. Thus, for C1908 we need to store 353 vectors or 346
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vectors depending on the chain length used in the algorithm. The storage improve-

ment obtained using transition test chains and the ATE repeat option is shown in

column 11, where chain length of 3 was assumed. Thus, for C1908, the storage im-

provement is calculated as 100* (526 - 353)/(526). Note the substantial reduction

in all cases. The average reduction in scan memory requirement is 46.5%.

Columns 6 and 7 compare the transition fault coverage obtained by weighted

transition graph (WT GR) and COM. Note that there is no loss in fault coverage

using WT GR. Columns 8, 9 and 10 compares the CPU time required by COM and

the two versions of our algorithm. For most of the circuits, COM is much faster.

The last column of the table shows changes in the test application time. Recall

that for a given transition test chain all but the first and last vectors are scanned in

twice. Therefore, the test application time gain for C1908 is computed as 100*(526-

2*353)/(526) = -34.22. This implies a 34.22% increase in test application time if

transition test chains with ATE repeat are used. However, in a number of cases

the test application time actually decreases by a significant amount. The average

increase in test application time is 6.9%.

Next, we will present the results for reducing the extra test application time

with exchange scan.

4.5.2 Experimental Results for Exchange Scan

Benefits of using the exchange scan, versus COM are reported in Table 4.8. Tran-

sition test chains were computed using our heuristic with chain length set to 3.

The improvement in both test application time and test data volume are reported

in column 4. Thus, for C1908, the test application time reduction is calculated as

100*(526 - 353)/(526) = 32.89%. We note that now there is a substantial reduction
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Table 4.8: ATE Weighted Transition Pattern Graph Algorithm vs. COM

STORAGE IMPROVEMENT� � � �  �� � ����� � � � �
DATA,APPTIME(%)

c1908 526 353 32.89
c2670 396 185 53.28
c3540 732 410 43.99
c5315 496 310 37.50
c6288 180 130 27.77
c7552 756 428 43.38
s5378 980 455 53.57
s9234 1674 644 61.53

s13207 2004 681 66.02
s15850 1848 729 60.55
s35932 274 224 18.29
s38417 3854 1555 59.65

in both the scan memory requirement and the test application time, compared to

COM. The average reduction in both test application time and data storage require-

ment is 46.5%.

Results from Table 4.8 and Table 4.7 are illustrated graphically in Figure

4.10. For each circuit, the data storage requirement and test application time are

plotted for the conventional ATE, ATE repeat, and Exchange scan.

4.5.3 Experimental Results for Constrained ATPG

In Table 4.9, we compare the results of the weighted transition graph algorithm

with and without considering the constraints on functionally untestable faults. The

number of functionally untestable faults identified by our implication engine is pre-

sented in column 2, followed by the percentage of functionally untestable faults

for each circuit. The next three columns show the transition fault coverage by the

STRATEGATE stuck-at vectors: the total transition fault coverage, the functional
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testable fault coverage and the overtesting fault ratio are given, respectively. Next,

the results without considering the functionally untestable faults are shown. And

the final three columns tabulate the results on the transition fault coverage while

considering the constraint on functionally untestable faults.

For instance, for circuit s5378, our low-cost transition implication engine

identified 3695 out of the total 15322 faults are functionally untestable. So the

percentage of functionally untestable faults is 3695/15322=24.12%. In other words,

only 75.88% (1-24.12%) of the faults can be detected in the functional mode.

When looking at the STRATEGATE stuck-at test set for s5378, we found

that it can detect 92.96% of the transition faults. While most of the functionally

testable faults can be detected (75.87% out of total 75.88%), the overtesting ratio for

functionally untestable faults is 17.29%. If we ignore the overtesting factor and only

target those functionally testable faults, our weighted transition graph algorithm

can improve the total transition fault coverage to 94.16% but at the cost of the

overtesting ratio of 18.29%. Finally, if we impose the constraint of minimizing the

overtesting of functionally untestable faults in our graph algorithm, we can reduce

the overtesting ratio to only 3.75% and still capture most of the functionally testable

faults. Only 75.88%-74.86=1.02% of the functionally testable faults are missing.

Note that for this Constrained ATPG, we do not include the original sequence of

s@ vectors in our final test set, since the original order of vectors can potentially

detect many functionally untestable faults. Results for other benchmark circuits can

be explained in a similar manner.
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Table 4.9: Results with/without Constraint

Red Red Orig. S@ vectors Without Constraint Constrained ATPG��� � fault ratio
� � ��� � � � � � � ��� � � � � ��� � ��� �

OVT� � 	 ��� 	 � � 	 ��� 	 ��� 	 � � 	 ��� 	 ��� 	 � � 	
(%)

s344 66 6.5 88.0 82.6 5.5 98.5 92.1 6.4 93.4 91.8 1.6
s832 96 4.3 72.5 69.9 2.5 94.3 90.8 3.5 91.0 90.5 0.5

s1196 5 0.1 86.2 86.1 0.1 94.7 94.6 0.1 91.3 91.3 0
s1423 387 9.4 94.4 86.5 7.9 98.1 89.9 8.3 88.6 83.3 4.7
s5378 3695 24.1 93.0 75.1 17.9 94.2 75.8 18.3 84.3 74.9 3.8

s35932 11255 11.2 86.6 85.3 1.4 89.6 87.9 1.7 89.1 87.4 1.7
s38417 32086 27.0 97.4 72.1 25.2 97.6 72.4 25.3 87.9 69.3 18.6

4.6 Summary

We presented efficient techniques to reduce test data volume and test application time for

transition faults. First, we propose a novel transition test chain formulation via a weighted

transition pattern graph. Only s@ ATPG is needed to construct the necessary test chains

for transition faults. By combining the proposed transition test chain and ATE repeat ca-

pability to reduce the test data volume by 46.5%, when compared with the conventional

approach. The second technique that replaces the ATE repeat option with Exchange Scan

improves both test data volume and test application time by 46.5%. In addition, we address

the problem of yield loss due to incidental overtesting of functionally untestable transition

faults, By formulating it into a constraint in our weighted pattern graph, we can efficiently

reduce the overtesting ratio. The average reduction on the overtesting ratio is 4.68%, with

a maximum reduction of 14.5%.
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Figure 4.10: Graphical Experimental Results

62



Chapter 5

Hybrid Scan-based Delay Testing

5.1 Introduction
With ever decreasing geometry sizes and increasing clock speeds, ascertaining correct op-

eration of digital circuits at desired speed is becoming a necessity rather than an option

to maintain product quality level. In the past, testing circuit’s performance was typically

accomplished with functional test patterns. However, developing functional test patterns

that attain satisfactory fault coverage is unacceptable for large scale designs due to the pro-

hibitive development cost. Even if functional test patterns that can achieve high fault cov-

erage are available, applying these test patterns at-speed for high speed chips requires very

stringent timing accuracy, which can be provided by very expensive automatic test equip-

ments (ATEs). The scan-based delay testing where test patterns are generated by an auto-

matic test pattern generator (ATPG) on designs that involve scan chains is increasingly used

as a cost efficient alternative to the at-speed functional pattern approach to test large scale

chips for performance-related failures [BRS � 02, SBG � 02]. Design-for-testability (DFT)-

focused ATEs [COM00, ROB00], which are designed and developed to lower ATE cost by

considering widely used DFT features of circuits under test (CUTs) such as full and partial

scan are emerging as a strong trend in test industry.
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In this chapter, we present a novel scan-based delay test approach that combines

advantages of the skewed-load and broad-side approaches. In the hybrid approach, only a

small set of selected scan flip-flops are controlled by the skewed-load approach and the rest

of scan flip-flops are controlled by the broad-side approach. Hardware overhead to imple-

ment the proposed technique is substantially lower than that for the traditional broad-side

approach and comparable to that for the traditional broad-side approach. No additional ex-

ternal pin is required to implement the proposed approach. The proposed hybrid approach

can achieve higher coverage than the traditional broad-side approach. Sizes of test pattern

sets generated by the hybrid approach are comparable to those of test pattern sets gener-

ated by the skewed-load approach. ATPG run times of the proposed hybrid approach are

typically shorter than those of the traditional broad-side approach. Although the proposed

technique is applicable to other delay fault models, in this chapter we focus only on transi-

tion delay fault model.

The rest of this chapter is organized as follows. Definitions and notations that are

used in the rest of chapter are described in Section 5.2. Section 5.3 gives an in-depth com-

parison between Skewed-load and Broadside. The motivation and key idea of the proposed

hybrid approach are described in Section 5.4. The selection criterion used to select the

flip-flops to be controlled by the skewed-load approach is described in Section 5.5. The im-

plementation of the circuit that generates the fast scan enable signal, which is used to drive

flip-flops that are controlled by the skewed-load approach, from the slow scan enable signal

is discussed in Section 5.6. Section 5.7 reports experimental results. Finally, Section 5.8

gives the conclusions.

5.2 Definitions and Notations
Figure 5.1 (a) describes the Huffman model of a sequential CUT, which employs full scan,

has � primary inputs, "�� 
�� "�� � � � � � � "���� , � primary outputs, "
� 
�� "
� � � � � � � "
��� , � state inputs

, �$� 
�� �$� � � � � � � �$� � , and also � state outputs, ��� 
�� ��� � � � � � � ��� � . Each pair of state output
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��� 	 and state input �$� 	 , where ��� �
�
�
�
� � �

�
� are connected through a scan flip-flop � 	

to constitute a feedback loop. The scan flip-flops are controlled by a scan enable signal

to configure it into either its shift mode or normal mode. We assume that the scan chain

is constructed with muxed scan type flip-flops. A muxed type scan flip-flops consists of

a regular flip-flop and a multiplexer whose output is connected to the input of the regular

flip-flop. The select input of the multiplexer selects between the normal data input and the

scan input. When the normal data input is selected, the scan flip-flops is configured into its

normal mode and when the scan input is selected, the scan flip-flop is configured into its

shift mode.

pil pil-1 pi1
si1sin sin-1

CUT
Primary Inputs State Inputs

Primary Outputs State Outputs

. . . . . . . . .

. . .. . .

Sout
Sin
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son son-1 so1

pil pil-1 pi1 si1sin sin-1
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Primary Inputs State Inputs

State Outputs

. . . . . .

. . .
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Primary Inputs State Inputs
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pil pil-1 pi1

. . .
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. . .
son son-1 so1

(a)

(b)

DnDn-1D1

time frame2

time frame1

Figure 5.1: An Example Full-Scan Circuit (a) Original Circuit (b) Two Frame Ver-
sion

When the circuit employ full scan, test vector pairs for transition delay faults can be
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generated by running a combinational ATPG for a two time frame version of the circuit. A

two time frame version of the original circuit shown in Figure 5.1 (a) is shown in Figure 5.1

(b) where the state outputs of the first time frame copy are connected to the state inputs of

the second time frame copy, i.e., state outputs ��� 	 , where � � �
�
�
�
� � �

�
� , of the first time

frame copy are connected to state inputs �$� 	 of the second time frame copy.

The scan chain input of the scan chain is connected to the scan input of scan flip-

flop � 
 and the scan output of � 
 is connected to the scan input of �
�
, and so on, and

finally the scan output of � � is connected to the scan chain output. Hence, when the scan

chain is in the shift mode, the value at state input ��� 	 of the second time frame is the same

as the value at state input �$� 	���
 of the first time frame. Unlike state inputs, we assume that

primary inputs are fully controllable, i.e., completely independent vectors can be applied to

primary inputs at any two consecutive test cycles.

5.3 Skewed-load vs. Broadside

Although delay fault testing has been researched for years, most researches on delay fault

testing have focused on combinational circuits. However, due to limited controllability of

state inputs when standard scan is employed, applying these techniques to standard scan

designs is not straightforward. Test procedures of the two traditional approaches to apply

test vector pairs to standard scan designs are illustrated in the timing diagrams shown in

Figure 5.2. In both skewed-load and broad-side approaches, the initialization vector of a

test vector pair is first loaded into scan chain by � consecutive scan shift operations, where

� is the number of scan flip-flops in the scan chain, in the same fashion as a stuck-at test

vector is loaded into the scan chain. The last shift cycle when a test vector is fully loaded

into the scan chain CUT, is referred as the initialization cycle (see Figure 5.2 (a) and (b)).

The clock speed during scan shift operations is typically lower than the full system clock

speed. The launch vector is applied after the CUT is stabilized from switching caused by
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applying the initialization vector. The response to the launch vector is captured into scan

flip-flops at the next clock cycle. Note that unlike the launch clock after the initialization

clock, the capture clock is applied at full system clock speed after the launch clock.

slow scan enable

at-speed clocks
clock

(a)

(b)

initialization
cycle cycle

launch capture
cycle

at-speed clocks

initialization
cycle cycle

launch capture
cycle

fast scan enable

Figure 5.2: Scan-based Delay Test Diagram (a) Skewed-load Approach (b) Broad-
side Approach

The second vector is derived from the first vector in both approaches. In the skewed-

load approach [SP93], the second vector is obtained by shifting in the first vector (initial-

ization vector), which is loaded into the scan chain, by one more scan flip-flop and scanning

in a new value into the scan chain input. Note that the scan enable signal stays at logic high

during the launch cycle in the timing diagram shown in Figure 5.2 (a). At the next clock

cycle (capture cycle), the scan enable signal switches to logic low and the scan flip-flops in

the scan chain are configured in their normal mode to capture the response to the scanned

in test vector. Since the capture clock is applied at full system clock speed after the launch

clock, the scan enable signal, which typically drives all scan flip-flops in the CUT, should

also switch within the full system clock cycle. This requires the scan enable signal to be

driven by a sophisticated buffer tree or strong clock buffer. Such design requirement is often

too costly to meet. Furthermore, meeting such a strict timing required for the scan enable
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signal may result in longer design time.

Since the second vector of each vector pair is obtained by shifting in the first vector

by one more scan flip-flop, given a first vector, there are only two possible vectors for the

second vector that differs only at the value for the first scan flip-flop whose scan input is

connected to the scan chain input. This shift dependency restricts the number of combina-

tions of test vector pairs to � � � � [SB91] in standard scan environment, where � is the

number of scan flip-flops in the scan chain. If there is a transition delay fault that requires

a 1 at state input �$� 	���
 in an initialization vector and requires a 0 at state input �$� 	 in the

corresponding launch vector to be detected, then that fault is untestable by the skewed-load

approach (assume that the scan chain is constructed by using only non-inverting outputs of

scan flip-flops).

In the broad-side approach, the second vector is obtained from the circuit response

to the first vector. Hence, the scan flip-flops are configured into the normal mode by lower-

ing the enable signal before every launch cycle (see Figure 5.2 (a)). Since the launch clock

following an initialization clock need not be an at-speed clock, the scan enable signal does

not have to switch to logic low at full system clock speed between the initialization clock

and the launch clock. Note that in the broad-side approach, launch vectors are applied when

scan flip-flops are in their normal mode. In other words, the at-speed clocks, the capture

clock after the launch, is applied to scan flip-flops while the scan flip-flops stays in their

normal mode. Hence, the scan enable signal does not have to switch between the launch

cycle and the capture cycle when clocks are applied at full system clock speed. Hence, the

broad-side approach does not require at-speed transition of the scan enable signal and can

be implemented with low hardware overhead.

Even though the broad-side approach is cheaper to implement than the skewed-load

approach, fault coverage achieved by test pattern sets generated by the broad-side approach

is typically lower than that achieved by test pattern sets generated by the skewed-load ap-

proach [SP94a]. Test pattern sets generated by the broad-side approach are typically larger
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than those generated by the skewed-load approach [SBG � 02]. In order to generate two-

vector tests for the broad-side approach, an ATPG with sequential property that considers

two full time frames is required. On the other hand, test patterns for the skewed-load ap-

proach can be generated by a combinational ATPG with little modification. Hence, higher

test generation cost (longer test generation time) should be paid for the broad-side approach.

Since in the broad-side approach, the second vector is given by the circuit response

to the first vector, unless the circuit can transition to all �
�

states, where � is the number

of scan flip-flops, the number of possible vectors that can be applied as second vectors of

test vector pairs is limited. Hence, if a state required to activate and propagate a fault is an

invalid state, i.e., the state cannot be functionally justified, then the transition delay fault

is untestable. Typically, in large circuits that have a large number of flip-flops, the number

of reachable states is only a small fraction of �
�

states. Due to this reason, transition fault

coverage for standard scan designs is often substantially lower than stuck-at fault coverage.

Enhanced scan testing [DS91] allows the application of any arbitrary vector pair

to the combinational part of a sequential circuit. Hence, complete fault coverage can be

attained. However, since this technique requires enhanced scan cells, which can hold two

bits, the disadvantage of enhanced scan testing is high area overhead of enhanced scan cells.

In this chapter, we refer to faults that are not testable under standard scan environment but

testable under full enhanced scan environment as dependency untestable faults. Particu-

larly, dependency untestable faults that are not testable due to shift dependency, which may

exist when the skewed-load approach is used, are referred as shift dependency untestable

faults and dependency untestable faults that are not testable due to function dependency,

which may exist when the broad-side approach is used, are referred as function dependency

untestable faults.
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5.4 Key Idea

As described in Section 5.3, although the skewed-load approach has several advantages

(higher fault coverage, smaller test sets, and ease of test generation) over the broad-side ap-

proach, the broad-side approach is the only choice of scan-based test method in many cases

due to difficulty meeting design requirements of the skewed-load approach [SBG� 02].

However, using the broad-side approach to avoid high hardware overhead will incur signifi-

cantly higher test cost and result in lower test quality for most designs than the skewed-load

approach.

The cost of test application is directly determined by the size of test set to be ap-

plied. As size and complexity of chips grow, size of test sets also tend to grow. Hence,

generating compact test sets is a very important objective of test developers. Due to large

test volume required to achieve satisfactory coverage, transition fault coverage is often

compromised for acceptable test volume. In most compaction algorithms, don’t cares in

test vectors, which are not assigned binary values, play an important role in compacting test

vectors. Test compaction techniques can be classified as dynamic [GR79,PRR91] and static

compaction [GR79, CL95] according to when compaction of test vectors is performed. In

dynamic compaction, which performed during test generation, don’t cares, which are not

specified in a vector generated to detect a fault, are specified to detect more faults. Test

vectors that have many don’t cares can be easily merged together by a static compaction

technique, which is performed on pre-generated test patterns as a post-processing step, to

reduce the number of patterns in the final test pattern set.

Figure 5.3 illustrates backtrace operations during test generation process to generate

test vector pairs for delay faults. Suppose that we want to generate a test vector pair for the

slow-to-rise (STR) fault at line � . Assume that state input ��� 	 should be assigned a 1 to

activate the fault and propagate the activated fault effect to observation point(s) (primary

and scan outputs). If we use the broad-side approach, we may need to specify a large

number of state inputs in time frame 1 to set �$� 	 to a 1 in time frame 2. On the other hand,
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Figure 5.3: Assignment of State Inputs in Time Frame 2 (a) Broad-side Approach
(b) Skewed-load Approach

if we use the skewed-load approach, the assigning a 1 to ��� 	 in time frame 2 is achieved by

setting only ��� 	���
 to a 1 in time frame 1 (see Figure 5.3 (a)) and no backtrace is required

in time frame 1. Hence, test patterns generated by the skewed-load approach typically have

more don’t cares, i.e. fewer specified bits, than those generated by the broad-side approach.

This implies that test patterns generated by the skewed-load approach have more room for

compaction. Indeed, sizes of test sets generated for the skewed-load approach are typically

smaller than those of test sets generated by the broad-side approach [SBG � 02].

Switching the scan enable signal that drives all scan flip-flops in a large circuit

within one full system clock cycle requires a strong clock buffer or a buffer tree. But a scan

enable signal that drives only a small number of flip-flops (say, 100 flip-flops) can switch

in one full system clock cycle without any strong buffer or buffer tree. If only a small set
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of state inputs of the circuit require a large number of inputs to be specified in time frame

1 to be set to binary values in time frame 2 (and the rest of state inputs can be set to binary

values in time frame 2 by specifying only small numbers of inputs in the time frame 1),

then controlling only those state inputs by the skewed-load approach and controlling the

rest of state inputs by the broad-side approach will generate test patterns that have many

don’t cares. Since we drive only the small set of scan flip-flops by a separate scan enable

signal, the separate scan enable signal can switch in one system clock cycle without being

driven by a strong buffer or a buffer tree. The scan enable signal that drives the rest of scan

flip-flops that are controlled by the broad-side approach signal need not switch at-speed.

In consequence, by using our hybrid approach, we can take advantages of the skewed-

load approach without having to meet costly design requirement required by the traditional

skewed-load approach. In the rest of this chapter, scan flip-flops that are controlled by

the skewed-load approach are referred to as skewed-load flip-flops and flip-flops that are

controlled by the broad-side approach are referred to as broad-side flip-flops.

time frame 2time frame 1
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0

0
0 0 1
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0 0 0 0

1 D1
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Figure 5.4: Function Dependency Untestable Fault

Another advantage of the proposed hybrid approach is that some faults that are not

testable by the traditional broad-side approach due to function dependency can become

testable by the hybrid approach. For example, consider the STR fault at line � in the circuit

shown in Figure 5.4. In order to initialize the STR fault, line � should be set to a 0 in

time frame 1. Assume that when the select input of multiplexer of a scan flip-flop, which

selects between the scan input and the normal data input, is set to a 0, then the scan flip-flop

is configured into normal mode and the normal data input of the multiplexer is selected.
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Therefore, the 0 at line � in time frame 1 propagates to state input ��� 
 in time frame 2

through the AND gate at the next cycle. The 0 at input �$� 
 in turn propagates to line � in

time frame 2. However, in order to activate the STR fault in time frame 2, line � should be

set to a 1. Hence, the STR fault is not testable when the broad-side approach is used. Now,

assume that we control scan flip-flop � 
 by the skewed-load approach, i.e., the select input

of multiplexer of � 
 is set to a 1 to select the scan input. If the scan input is assigned a 1,

then the 1 at the scan input propagates to input �$� 
 in time frame 2 rather than the 0 at the

normal data input. When both primary inputs "
� 
 and "��
�

are assigned 1’s in time frame 2,

the STR fault at line � can be detected at scan output ��� 
 .
Finally, the proposed approach can speed up ATPG process. Let us revisit Fig-

ure 5.3. Again let us assume that state input ��� 	 should be set to a binary value % , where

% ��� or 1, in time 2 to activate a target fault and propagate the fault effect. When the

broad-side approach is used, this need to assign a large number of inputs (primary or state

inputs) to binary values in time frame 1. If PODEM [GOE81] algorithm is used to gener-

ate test patterns, this will be achieved by a series of backtrace operations in time frame 1.

Whether setting ��� 	 to a 1 in time frame 2 leads to a solution to generate a test vector pair

for the target fault at line � cannot be determined until state �$� 	 is assigned a % in time frame

2. If setting �$� 	 to a 1 in time frame 2 does not leads to a solution, it is found only after

a lot of CPU time has been already spent on backtrace operations and following forward

implications. On the other hand, if the skewed-load approach is used, setting state input �$� 	
to binary value % can be achieved by simply setting state input ��� 	 ��
 in time frame 1 and

forward implying the assignment at state input ��� 	���
 . This requires no backtrace operations

in time frame 1. If setting state input ��� 	 to % in time frame 2 does not lead to a solution,

then the ATPG can immediately backtrack without wasting time on backtrace operations

and following forward implications.
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5.5 Selecting Skewed-load Flip-flops

We use controllability measures, which are similar to SCOAP [GT80], as a criterion to

select scan flip-flops to be controlled by the skewed-load approach. We select � state out-

puts, where � is determined from the number of flip-flops the scan enable signal can drive

without being driven by a strong buffer or buffer tree, that have highest 0 or 1 controllabil-

ity measure and control the selected � scan flip-flops by the skewed-load approach. The

0 (1) controllability measure of line � ,
��� � ��
 (

� 
 � ��
 ), is the minimum number of primary

and state inputs to be specified to set line � to a 0 (1). Controllability measures of line � are

defined as:

��� � ��
 �

��������� ��������

� if � is a primary input

� if � is a state input

���	� ��

� ��� � �
�

�� if %�� ��� �

�
��
 ���� � � � 
 otherwise �

(5.1)

where � � and � are respectively inputs and outputs of a gate with controlling value � and

inversion � . If a value � , when applied to an input of a gate, determines the value at the

output of the gate regardless of the values applied to its other inputs, then the value is said

to be the controlling value of the gate. Note that the controllability measures are calculated

on one time frame version of the circuit.

If we select the skewed-load flip-flops considering only controllability measures of

corresponding state outputs, then it may introduce shift dependency untestable faults. If

a scan flip-flop drives the fanout cone that its immediate predecessor scan flip-flops also

drives, then controlling the scan flip-flop by the skewed-load approach may introduce shift

dependency untestable faults (see Section 5.3). Hence when we select flip-flops to be con-

trolled by the skewed-load, we should also consider shift dependency relation between ad-

jacent scan flip-flops to avoid introducing shift dependency untestable faults.

If state input ��� 	 drives no fanout cones that its immediate predecessor state input

��� 	���
 drives, then �$� 	 is said to be independent and controlling such state inputs ��� 	 by the

74



skewed-load approach does not introduce any shift dependency untestable faults [SAV92a].

When we use the skewed-load approach for all scan flip-flops in the circuit, it is enough

to consider only one time frame to identify independent state inputs. However, in the hy-

brid approach, some of scan flip-flops are controlled by the broad-side approach. Hence,

in order to guarantee no decrease in fault coverage due to introduction of shift dependency

untestable faults, we have to consider two time frames to identify independent state inputs.

However, according to our extensive experiments, decrease in fault coverage due to select-

ing state inputs that are independent in one time frame but not independent in two time

frames to be controlled by the skewed-load approach is negligible. Since there are very few

state inputs that are independent in two time frames, in the experiments whose results are

shown in Section 5.7, we considered only one time frame during the independent state input

identification process in order to select more skewed-load scan flip-flops. Figure 5.5 shows

a pseudo code for the algorithm to select skewed-load scan flip-flops.

Selecting skewed-load scan flip-flops
computeC1(l) andC0(l) for every linel in the circuit;
for every state outputsoi;
cost(soi) = max(C1(soi), C0(soi));
for every state inputsii;

compute shift dependency relation withsii-1;
end for;
sort state outputssoi by cost(soi), in non-increasing order
j = 1;
for i = 1 ton; /* n is the number of state inputs in thecircuit */

if sii is indepdent ofsii-1, then
select corresponding flip-flopDi as a skewed-load flip-flop
and incrementj by 1;
if (j > M) then exit the for loop;

end for;

Figure 5.5: Pseudo Code for Skewed-load Flip-flop Selection Algorithm
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Figure 5.6: Fast Scan Enable Signal Generator

5.6 Generating Fast Scan Enable Signal

The fast scan enable signal, which drives skewed-load flip-flops, is internally generated

from the slow scan enable signal, which comes from an external pin and drives broad-side

flip-flop, and the system clock signal. Hence, no additional external pin is required for

the fast scan enable signal. Figure 5.6 shows a schematic for the fast scan enable signal

generator and waveforms of involved signals. As the schematic shows, the fast scan enable

signal generator can be implemented with very little hardware. Since the fast scan enable

signal is synchronized with the system clock, which is accessible from the clock pin of

any flip-flop, the fast scan enable signal generator can be located anywhere in the chip to

minimize routing from the fast scan enable signal generator to skewed-load flip-flops that

are driven by the fast scan enable signal thereby reducing possible skew problem of the fast

scan enable signal and routing overhead in congested chips. Furthermore, since the fast

scan enable signal is synchronized, it is also possible to use multiple fast scan enable signal

generators and multiple fast scan enable signals each of which drive different sets of skewed

flip-flops. When there are many state outputs that have high controllability measures and

hence all the scan flip-flops that have high controllability measures cannot be driven by a
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single fast scan enable signal without a strong buffer, then multiple fast scan enable signals

can be used to reduce load capacitance of fast scan enable signals by making each fast scan

enable signal drive only small set of scan flip-flops. Since a fast scan enable generator

is comprised of only two flip-flops, even hardware overhead of tens of fast scan enable

generators will be significantly lower than a clock buffer or buffer tree.

5.6.1 Multiple Fast Scan Enable Signals

Some circuits have very small numbers of independent state inputs even if we consider one

time frame for identification of independent state inputs. If such circuits have large numbers

of state inputs that have high controllability measures, then reduction in test pattern set sizes

and enhancement of fault coverage that are obtained by using the hybrid approach may not

be significant. If we use multiple fast scan enable signals, then we can obtain large reduction

in test set sizes and improvement in fault coverage even for such circuits. If we partition

an entire delay test application task into several sub-phases and control a different subset

of scan flop-flops by fast scan enable signals at each sub-phase, then faults that are not

detected due to shift dependency in a sub-phase can be detected in other sub-phases.

Figure 5.7 shows a circuit to control multiple fast scan enable signals. The test

register is used to control which sets of skewed-load flip-flops are drive by fast scan enable

signals. In each sub-phase, the test register will be loaded with different values according to

the sets of scan flip-flops that will be controlled by the skewed-load approach. Assume that

the test register is loaded with 0100 in sub-phase 1. When the test register is loaded with

0100, only the set of scan flip-flops that are driven by scan en2 will be controlled by the

skewed-load approach and scan flip-flops controlled by other scan enable signals, scan en1,

scan en3, and scan en4, will be controlled by the broad-side approach. If scan flip-flops

that are driven by scan en2 drive state inputs that are not independent, then there may exist

shift dependency untestable faults that are not detected in sub-phase 1. However, if the test

flip-flop that controls scan en2 is loaded with a 0 in sub-phase 2, then the shift dependency
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untestable faults that are not detected in sub-phase 1 can be detected in sub-phase 2.

Decrease in fault coverage due to shift dependency can be further minimized by

input separation techniques [SP93] and/or scan path test point insertion technique [WC03].

fast scan

generator
enable

test

register

to
broad-side
flip-flops

to
skewed-load

flip-flops

scan_en1

scan_en2

scan_en3

scan_en4

0

1

0

0

Figure 5.7: Multiple Fast Scan Enable Signal Control Circuit

5.7 Experimental Results

Table 5.1 shows experimental results for full scan versions of ISCAS 89 benchmark circuits.

The experiments were conducted on a SUN Microsystem’s Ultra 1 with 1 Giga bytes of

memory. The column # FFs shows the number of scan flip-flops in each benchmark circuit.

Results obtained by using the skewed-load, the broad-side, and the hybrid approach are

compared for fault coverage (columns % FC), numbers of test vectors generated (columns

# Vec.), and ATPG run times (columns time). Columns under the heading Skewed-load are

results for the traditional skewed-load approach, columns under the heading Broad-side are

results for the traditional broad-side approach, and columns under the heading Hybrid are

results for the proposed hybrid delay scan approach. We used only one fast scan enable

signal for all benchmark circuits and used � (the maximum number of skewed-load flip-

flops) as 10% of total number of scan flip-flops in the circuit. However, only 1 or 2 flip-flops

78



Table 5.1: Experimental Results

CKT Skewed-load Broad-side Hybrid
Name # FFs % FC # Vec. times % FC # Vec. time # SFFs % FC # Vec. times

s208 8 83.43 41 0.13s 69.23 28 0.29s 1 73.96 33 0.13s
s298 14 78.79 30 0.13s 79.17 30 0.39s 2 87.12 48 0.22s
s344 15 92.13 37 0.15s 92.88 36 0.35s 1 96.63 46 0.18s
s349 15 92.31 38 0.15s 93.04 42 0.42s 1 96.70 48 0.14s
s386 6 88.44 76 0.25s 66.33 47 0.89s 1 80.27 63 0.72s
s420 16 82.35 80 0.59s 68.24 53 1.32s 1 70.00 56 0.60s
s444 21 87.70 38 0.22s 77.01 42 1.32s 3 79.14 47 1.26s
s510 6 86.85 80 0.60s 84.13 79 2.26s 1 93.88 88 1.25s
s526 21 83.30 70 0.46s 60.89 58 2.11s 3 68.92 70 2.05s
s641 19 99.49 57 0.60s 95.67 83 9.33s 2 96.44 78 16.46s
s713 19 99.56 66 0.79s 94.32 91 17.20s 2 94.98 76 38.11s
s820 5 84.62 131 1.67s 77.49 133 10.46s 1 85.04 138 21.05s
s832 5 84.52 141 1.70s 77.13 135 11.43s 1 84.94 148 21.89s
s838 32 81.71 152 3.08s 67.55 104 6.73s 1 68.44 108 2.93s
s953 29 91.94 133 2.30s 92.43 134 6.49s 3 95.85 135 6.36s

s1196 18 99.91 227 4.72s 99.81 237 8.06s 2 99.81 217 2.36s
s1238 36 99.91 232 7.58s 99.72 233 12.10s 2 99.72 231 5.61s
s1423 74 95.41 113 12.44s 87.73 134 9m23s 8 88.48 129 14m7s
s1488 6 76.22 145 4.31s 85.59 151 24.13s 1 91.80 171 21.8s
s1494 6 75.88 145 4.25s 85.51 147 24.00s 1 91.81 170 22.45s
s5378 179 92.22 336 47.34s 93.02 365 9m2s 18 94.76 349 22m40s
s9234 228 91.89 605 12m50s 83.01 643 83m21s 23 84.98 598 126m27s

s13207 669 88.27 654 8m48s 77.74 620 24m48s 67 89.52 803 17m5s
s15850 597 92.53 595 22m6s 66.17 508 113m16s 60 72.56 524 166m1s
s35932 1728 100.0 125 7m11s 93.80 131 11m58s 173 99.58 175 6m40s
s38417 1636 98.57 1705 136m26s 96.80 1566 226m23s 164 96.84 1669 505m33s
s38584 1452 92.48 1097 82m15s 90.31 1463 759m47s 146 93.20 1528 898m31s
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are selected as skewed-load flip-flops for many circuits since those circuits have very small

numbers of independent inputs.

For all benchmark circuits, except for s1196 and s1238, fault coverage achieved

by test pattern sets generated by our hybrid approach is higher than that achieved by test

pattern sets generated by the broad-side approach. For example, for s13207, broad-side

transition fault coverage is only 77.74% while the hybrid approach achieves as high as

89.52%. The average fault coverage improvement over all the ISCAS89 bench marks is

4.47% , with the highest improvement as 13.94%. It is notable that the hybrid approach

test pattern sets achieve higher fault coverage than the skewed-load approach test pattern

sets for s510, s820, s832, and s13207 for which the broad-side approach test pattern sets

significantly lower fault coverage. This implies that when carefully designed, the hybrid

approach can achieve even higher fault coverage than the skewed-load approach, which

requires very high hardware overhead.

For some circuits, the hybrid approach test pattern sets are larger than the broad-

side approach test pattern sets. However for those circuits, the hybrid approach test pattern

sets substantially achieve higher fault coverage. For most circuits for which the hybrid and

broad-side achieve similar fault coverage, hybrid approach test pattern sets are smaller than

broad-side test pattern sets. The only exception is s38417 for which the hybrid approach test

patterns attains similar fault coverage to broad-side approach test patterns. But the hybrid

test set for s38417 has about 100 more patterns that the broad-side test set. We believe that

this is due to inaccuracy in controllability measures as the criterion to select skewed-load

flip-flops. Note that the 1 (0) controllability measure at a line reflect the minimum number

of inputs to be specified to set the line to 1 (0). However, due to conflict with other necessary

assignments during test generation processes, setting a line to a binary value by specifying

only minimum number of inputs may not be possible. If state output ��� 	 has a very high

1 controllability measure
� 
 � ��� 	 
 but very low 0 controllability measure

� � � ��� 	 
 , then the

corresponding scan flip-flop � 	 will likely be selected as a skewed-load flip-flop since the
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cost of ��� 	 , � ����� � ��� 	 
 � � �� � ��� � ��� 	 
 � � 
 � ��� 	 
�� , is very high (see Section 5.5). However,

if ��� 	 is required to be assigned 0’s in most test patterns, selecting scan flip-flop � 	 as the

skewed-load flip-flop will not help generate compact test pattern sets. A new cost function

that can correct above limitations of the current cost function is under investigation.

The ATPG run time of the hybrid approach is comparable with that of the broad-

side approach for most circuits except a few circuits such as s13207, s5378 and s38417.

For s13207, the ATPG run time of the hybrid approach is substantially shorter than that of

the broad-side approach and for 5378 and s38417, ATPG run time of the hybrid approach

is substantially longer than that of the broad-side approach.

5.8 Summary

In this chapter, a novel scan-based delay test approach, referred as the hybrid delay scan,

has been proposed. The proposed method combines advantages of skewed-load and broad-

side approaches and can achieve higher delay fault coverage than the broad-side approach.

By selecting only a small fraction of the state inputs as the skewed-load flip-flops, we avoid

the costly design requirement in skewed-load approach due to the fast scan enable signal

that must switch in a full system clock cycle.

Our experimental results show that for all the ISCAS 89 Benchmarks, the transition

delay fault coverage achieved by hybrid approach is higher than or equal to that achieved

by broadside load approach, with an average improvement of 4.47%. Due to limitation of

the current cost function that is used as the criterion to selection skewed-load flip-flops,

reduction in test pattern sets is not spectacular. sets. A new cost function that improves the

current cost function is under investigation.

Some circuits have very small numbers of independent state inputs even if we con-

sider one time frame for identification of independent state inputs. If such circuits have

large numbers of state inputs that have high controllability measures, then reduction in test
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pattern set sizes and enhancement of fault coverage that are obtained by using the hybrid

approach may not be significant. If we use multiple fast scan enable signals, then we be-

lieve that we can obtain large reduction in test set sizes and improvement in fault coverage

even for such circuits. If we partition an entire delay test application task into several sub-

phases and control a different subset of scan flop-flops by fast scan enable signals at each

sub-phase, then faults that are not detected due to shift dependency in a sub-phase can be

detected in other sub-phases. We are currently investigating algorithms to partition skewed-

load flip-flops into several subsets to further enhance fault coverage.
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Chapter 6

Constrained ATPG for Broadside

Transition Testing

6.1 Previous Work
The stuck-at fault model [ELD59] is insufficient for catching speed-related failures, as more

chips are now more vulnerable to such failures due to higher clock rate, shrinking geome-

tries, longer wires, increasing metal density, etc. The three most prevalent fault models for

delay testings are: transition fault [WLRI87], path delay fault [SMI85], and segment delay

fault [HPA96]. Among them, the transition fault model are most widely used in the industry

due to its simplicity and similarity to the stuck-at fault model. In this chapter we only target

at the transition fault model.

In general, (non-scan) functional testing can be impractical for larger circuits in

that large test sets may be required to achieve a desirable fault coverage. As a result, at-

speed AC scan testing has been widely used in the industry to detect delay-induced defects.

Compared to functional testing, scan-based testing for delay faults can decrease the overall

ATPG complexity and cost, since both controllability and observability on the flip-flops are

enhanced. Nevertheless, the drawback of scan-based delay tests lies in two folds: hardware
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overhead and potential yield loss. In [REA01], the author reported that scan-based testing

may fail a chip due to the delay faults that do not affect the normal operation, and thus it is

unnecessary to target those functionally unsensitizable faults. In other words, we want to

avoid failing a chip due to a signal transition/propagation that was not intended to occur in

the functional mode. Moreover, a scan test pattern, though derived from targeting function-

ally testable transition faults, can incidentally detect some functionally untestable transition

faults if the starting state is an unreachable state.

Several papers [RM01, REA01, MaLB00] have discussed the relationship between

functional testing and scan-based testing. However, from our knowledge, currently there

is no quantitative analysis on functional untestable transition faults and scanning testing.

In this chapter, we describe a novel constrained ATPG algorithm for transition faults. Two

main contributions of our work are: (1) the constrained ATPG only targets at the func-

tionally testable transition faults and minimizes detection of any identified functionally

untestable transition faults; (2) the constrained ATPG can identify more functionally untestable

transition faults than the conventional transition ATPG tools. The first contribution (the con-

strained ATPG) enables us to derive transition vectors that avoid illegal starting states, while

the second contribution helps us to maximize the state space that we need to avoid. Because

we want to avoid launching and propagating transitions in the circuit that are not possible

in the functional mode, a direct benefit of our method is the reduction of yield loss due to

overtesting of these functionally untestable transitions. Our experimental results showed

that significantly more functionally untestable transition faults can be avoided in the final

test set.

The rest of the chapter is organized as follows. Section 5.1 gives an overview of the

three different scan-based transition test application techniques and explains the motivation

of this work. Section 6.3 presents an implication engine we developed to identify a sub-

set of the functionally untestable transition faults. Section 6.4 proposes a new constrained

ATPG algorithm targeting at only functionally testable faults and simultaneously avoiding
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the functionally untestable transition faults. Section 6.5 reports our constrained ATPG re-

sults, and compares them with a conventional transition ATPG engine. Finally, Section 6.6

concludes the chapter.

6.2 Background and Motivation
In ASIC area, transition tests are normally applied in two different ways: Skewed-load [SAV92a]

and Broadside [SP94b].

For skewed-load transition testing (also called last shift) [SAV92a, SAV92b], an

N-bit vector is loaded by shifting in the first N-1 bits, where N is the scan-chain length.

The last shift clock is used to launch the transition. This is followed by a quick capture.

For skewed-load testing, only one vector is stored for each transition pattern in tester scan

memory; the second vector is a shifted version of the stored vector. Therefore, skewed-

load testing is constrained by the correlation of the bits in the test pattern based on scan

chain ordering. Figure 6.1 shows a simple example where the slow-to-fall on line � is

untestable in Skewed-load testing. To detect the slow-to-fall fault on line d, we need to set

d

e

g

a

b

c

0

0

0

0

x

0

Shift
d slow−to−fall

14

Figure 6.1: Untestable Fault in Skewed-load

the second vector V2=000 to detect the d s-a-1, therefore the initial vector must be 00X,

the previously shifted version V2. However, this V1, 00X, is unable to initialize the line

� to logic 1. Since 000 is the only vector that can detect the d s-a-1 fault, thus d slow-to-

fall is untestable in skewed-load testing. Based on this observation, skewed-load may miss

some functionally testable faults because of the data dependency between the two vectors,

resulting in undertesting of the functionally testable faults.
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For broadside transition testing (also called functional justification) [SP94b], the

first vector is scanned in and the second vector is derived as the circuit response to the first

one. For broadside testing, after the first vector is scanned in and applied to the circuit, two

clock cycles need to be pulsed: the first to launch the transition and the second to capture the

circuit response. PI/PO changes would be made simultaneously with the first clock pulse

if necessary [SBG � 02]. Because it requires neither hold-scan design nor skewed shifting,

this has been widely applied for transition testing. In this chapter, we will consider the

Broadside model only.

Both Skewed-load and Broadside can suffer from yield loss due to a chip failing

on detection of functionally untestable transition faults. Figure 6.2 shows an example of

overtesting problem using traditional ATPG on ISCAS benchmark circuit s344. we can

derive the following observations from figure 6.2:

(b)Skewed−load vs. Funct.(a)Broadside vs. Funct.

19

49 17 37
47

Figure 6.2: Untestable faults for S344

1. In part (a) of the figure, it shows that the set of 47 untestable faults by Broadside

testing is a subset of the 66 functionally untestable faults.

2. In part (a) of the figure, Broadside testing will incidentally detect 19 faults that would

be untestable in functional mode.

3. In part (b) of the figure, 54 transition faults cannot be tested in the skewed-load

testing mode. Our results show that only 17 out these 54 faults are truly functionally
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untestable; in other words, 37 (i.e., 54-17) functionally testable faults will be missed

by skewed-load testing.

4. In part (b) of the figure, Skewed-load testing will incidentally detect 49 functionally

untestable faults.

In general, we can relate the functional test and the various scan-based tests in terms

of their untestable transition faults as depicted in Figure 6.3. In this figure, the circle at the

untestable
Broadside

s@

Functional

untestable

Red

Skewedload
untestable

Figure 6.3: Functional testing vs. Scan-based testing

center depicts the set of redundant stuck-at fault set in the circuit, while each of the outer

circle/oval represents the fault set that cannot be detected by a particular test method, Based

on this relationship, some observations can be made:

1. For every redundant stuck-at fault in the circuit, there must be at least one corre-

sponding functionally untestable transition fault, which is clearly untestable by any

test method.

2. All scan-based test methods will incidentally detect some functionally untestable

transition faults, because either the states they scan in may be functionally unreach-

able or the state combination is not functionally possible.

3. If a transition fault is untestable by the Broadside model, it will be definitely untestable

in the function mode. Conversely, every functionally testable transition fault will be

detectable under broadside testing.
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4. Skewed-load can potentially miss some functionally testable faults due to the corre-

lation between the vector and its shifted version.

5. Some of the untestable transition faults in Broadside may be detectable in skewed-

load test, and vice versa.

Another reason we want to restrict our ATPG starting from reachable states is that

we might exercise a false critical path, which is otherwise unexercisable in the functional

operations.

Figure 6.4: Modulo-6 counter

Figure 6.4 gives us an example for a modulo-6 counter, which counts from 000 to

101. Therefore, the other two higher values (110 and 111) will be unreachable states. We

then exhaust all the input test vectors using a delay simulation. If we assume the delay on

each gate of the circuit is always 1, we can observe that:
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1. In function mode, the length of longest critical path is 4 i.e. the path of G5, G12,

G22, G23.

2. But a path of length 5 (G7,G13, G16, G22, G23) could be exercised in scan testing

by the test vector (1110)

We validated our gate-level delay simulation result with the spice simulator. The

spice simulation is based on the TSMC 0.25um process CMOS model and the input fre-

quency is set to be 20MHZ. We measure the propagation delay between the PI and OP

along the longest path, when the signals cross 2.5 volts.

Table 6.1: Regular Counting Transitions
Transition �

�
� � � ��� � � �
	

�
��� ���� � ����� ��� � �

1.096ns��� � ��� ��� � �
0.615ns��� � ��� ��� � �
1.249ns��� � ��� �
�����
0.623ns�
������� �
��� �
1.788ns

Table 6.2: Reset Transitions
Transition �

�
� � � ��� � � �
	

�
��� ���

��� � ��� � � ���
0.204ns��� � ��� � � ���
0.204ns��� � ��� � � ���
0.203ns�
������� � � ���
0.200ns�
��� ��� � � ���
0.312ns

Table 6.3: Illegal Transitions
Transition �

�
� � � ��� � � �
	

�
��� ���

�
��� ��� �
�
� �
2.232ns�
�
� ��� �
�
� �
1.245ns�
�
� ��� � � ���
2.207ns

From the spice simulation results, we can see that the longest critical path delay in

the function mode is 1.788ns, while the longest path delay starting from illegal states could
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be as long as 2.232ns. This result is in line with our previous gate-level delay simulation

results. So it is import to prevent the ATPG from searching into illegal states.

Furthermore, even if we remove all the identified functionally untestable faults from

the targeting list in our traditional ATPG, we may still incidentally detect some of them. We

illustrates this scenario in the figure 6.5,which is a fragment of sequential circuit.

Figure 6.5: Example of Overtesting

Suppose the State 
 
 
 � =01 is an unreachable state in the sequential circuit. Then,

the slow-to-rise transition fault on node b would be a functionally untestable fault, because


 
 
 � has to be set to 01 in oder to launch the transition on node b and propagate the fault ef-

fect to outputs. Therefore, the transition fault b slow-to-rise will NOT impair the functional

performance.

But if we look at another functionally untestable faults a slow-to-rise, we can notice

that the vector pair ( 
 
 
 � � � =X0X, 
 
 
 � � � =X11) would be a good test for it. If we fill

the unspecified bits randomly, we could have the test vector pair (000, 011) which

will detect both a slow-to-rise and b slow-to-rise, although b slow-to-rise is actually

functionally untestable and should NOT be detected. Therefore, in terms of avoid

overtesting problem, vector pair (100, 111) would be a better choice that detects

only a slow-to-rise but NOT b slow-to-rise. Similar idea can be also extended

beyond transition fault model to path delay fault model.
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6.3 Functionally Untestable Faults Identification
In general, functionally untestable transition fault identification in sequential cir-

cuits is of the same complexity as sequential ATPG, which is of exponential com-

plexity in terms of the size of the circuit. In this section, we describe a novel

untestable transition fault identification method by combining a transition fault im-

plication engine and Broadside ATPG.

In [HSI02], a method for identifying untestable stuck-at faults in sequen-

tial circuits by maximizing local conflicting value assignments has been proposed.

The technique first quickly computes a large number of logic implications across

multiple time-frames and stores them in an implication graph. Then the algorithm

identifies impossible combinations of value assignment locally around each gate in

the circuit and those redundant stuck-at faults requiring such impossibilities.

For identifying functionally untestable transition faults, in addition to search-

ing for the impossibilities locally around each gate, we also check the excitability of

the initial value in the previous time frame. Thus, the implication engine in [HSI02]

can be extended to quickly identify a large set of untestable transition faults in the

circuit.

Although the transition fault implication engine helps us in identifying a

large number of untestable transition faults in the circuit, it may be incomplete (i.e.,

not all untestable transition faults are identified). To avoid the high cost of calling a

functional-mode sequential ATPG to identify the other untestable transition faults,

we use a two-time-frame Broadside ATPG instead. As we discussed before, if a

transition fault is untestable in Broadside testing, then it is definitely untestable in

the function mode as well. So the transition fault implication engine and broadside

ATPG can be combined to estimate the total number of functionally untestable tran-

sition faults. This saves us from having to invoke a full sequential ATPG. Figure 6.3
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gives us a graphical illustration. In this figure, the outer rectangle represents the to-

S3S1S2

U

Figure 6.6: Approximation of Functionally Untestable Transition Faults.

tal number of functionally untestable transition faults in the circuit, and region S1

contains the redundant stuck-at faults identified by stuck-at fault implication-based

method [HSI02]; region S2 contains the untestable transition faults by our new

transition fault implication engine and S3 is the set of untestable transition faults

identified by the Broadside ATPG. Note that the new implication-based method

may identify some functionally untestable faults that ATPG misses, and vice versa.

The union of S1, S2, and S3 can give us a close approximation of the functionally

untestable transition faults within the circuit.

6.4 Constrained ATPG For Broadside Testing
In this section, we describe how we formulate the illegal states as a formula and

use it to speed up the ATPG process to generate effective test vectors that avoid

functionally untestable transition faults. A side benefit is that it also helps us to

identify the functionally untestable faults (region S3 in Figure 6.3) for broadside

testing.

As we described in Section 5.1, broadside vectors consists of initial state S1,

primary input vectors PI1 and PI2. The intermediate state in the second time-frame

is derived directly from S1 and PI1. PI2 in the second time-frame is independently

applied. In our broadside ATPG, we unroll the sequential circuit to two time-frames
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and attempt to generate a vector, which consists of state inputs (S), primary inputs

in the 1st time frame (PI1) and primary inputs in the 2nd time frame (PI2). We

denote a test vector V
�

in the unrolled circuit as (S
�
,PI1

�
,PI2

�
).

6.4.1 Problem Formulation

Given the set of functionally untestable transition faults,
���

, we want to make sure

that the vectors generated will not incidentally detect any fault in
���

. A naive

approach is to fault simulate the faults in
���

whenever a vector is obtained, and

the ATPG engine would backtrack if some faults in
���

are incidentally detected.

However, this naive approach can be computationally expensive. To reduce the

expense, instead of focusing on
���

, we project each fault in
���

onto the state space

to identify subspaces that will detect them. Subsequently, the ATPG only needs to

avoid searching in the identified subspaces. We note that any state � that can detect

any fault � " ���
would be an unreachable state, since fault � would otherwise be

functionally detectable.

Figure 6.4.1 illustrates our broadside testing model. In this model, let us

consider the detection of the slow-to-rise fault on line
�

, (We use
� �

and
� �

to

represent line
�

in the first and second time-frame respectively.) We need to satisfy

the following two objectives simultaneously:

1. Excite
� �

s-a-1 fault in the first time-frame and detect
� �

s-a-0 in the second

time frame.

2. Avoid detection of any transition faults in
���

by making sure the search space

does not overlap with the subspaces that can detect faults in
���

.

The second objective of avoiding detection of functionally untestable transi-

tion faults is key to the constrained ATPG. We first identify the state subspace that
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Figure 6.7: Broadside ATPG

can detect the functionally untestable transition faults, and this subspace is repre-

sented as a Boolean formula. Suppose that the circuit has � flip-flops � 
 ,..., � � , a

formula in conjunctive normal form (CNF) is used to represent the subspace. A

CNF formula over the � binary variables is the conjunction (AND) of



clauses
� 
 ,..., � � , each of which is the disjunction (OR) of one or more literals, where a

literal is the occurrence of a variable or its complement. Each clause in the formula

represents a subspace that the ATPG must avoid. Therefore, at any given time dur-

ing the ATPG search, no clause in the formula should evaluate to false (where each

literal in the clause is valued to 0).

The subset of states that can detect any functionally untestable transition

fault is obtained as follows.

1. Run the Implication Engine (TRANIMP) to identify the set of the function-

ally untestable transition faults (
��� 
 ).

2. Fault simulate with a 5,000 random vector set,
�
�
� � �

. Remove the easy func-

tionally testable faults and record any vector in
�
�
� � �

that detects one or more

of the functionally transition faults in
��� 
 . Please such vectors in

� 	 � ��� � � � .

3. For each vector in
� 	 � ��� � � � , deduce the illegal state (IS) and negate it to con-

struct the corresponding clause � as a constraint.
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4. Combine all the constraint clauses to form the CNF formula
�

.

Because obtaining the complete set of states that can detect any functionally

untestable transition fault is computationally expensive, we obtain only a subset of

states via random simulation. As a result, there may still exist states outside the

subset that may still detect a functionally untestable transition fault. However, our

experiments showed that the subset is sufficient to significantly reduce the inciden-

tal detection of functionally untestable faults.

Table 6.4 illustrates an example of how the constrained CNF formula
�

is

constructed from the set of illegal states. During the random vector simulation, if

a vector �
�

detects one or more functionally untestable faults identified by the im-

plication engine (TRANIMP), we record the state variables of �
�
, deduce the corre-

sponding constrained clause � � from the specified state variables. For example, in

Table 6.4, three illegal states are reported. The first illegal state is � 
 � � � � � � � � � � �
111XXX. The illegal state subspace can be represented simply as � 
�� � � � � � . Negat-

ing this conjunction gives us the clause � 
 � ��� 
�� ��� � � ��� � . This clause essentially

restricts any solution must fall within the subspace expressed by � 
 . The clauses

for the other two illegal states can be obtained in a similar manner. Finally, the

constrained CNF is formed by the conjunction of all the constrained clauses.

Table 6.4: CNF Formula Construction
Illegal States

���
� ��� � � � ��� � � � � � � � �

� 
 � � � � � � � � � �
1 1 1 X X X � 
 � � � 
 � � � � � � � �
X 1 0 X 1 X � � � � � � � � � � � � �
X 0 0 X X 0 � � � � � � � � � � �

�
= � 
 � � � � =( ��� 
 + ��� � + ��� � )( ��� � + � � + ��� � )( � � + � � + � � )
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6.4.2 Constrained ATPG Algorithm

Next, we will discuss how the constrained CNF formula
�

helps us to speedup the

ATPG process (and identify extra functionally untestable faults also). During the

ATPG process, we must make sure that no clause in
�

ever evaluates to false (i.e..,

all literals in a clause evaluates to false). Whenever we make a decision on a state

variable � � , we apply this decision assignment to all the constrained clauses in
�

that

contain � � . Application of this assignment may result in some unit clauses (a unit

clause is an unsatisfied clause with exactly one remaining unassigned literal left).

This remaining literal is called an implication. The implied variable automatically

becomes the next decision variable. We also check whether there is conflict (where

one clause evaluates to false). If there is a conflict, backtrack immediately. A test

vector is said to be generated for a transition fault X if it excites the fault X1 s-a-1

and detects faults X2 s-a-0, also it satisfies the constrained CNF
�

.

Table 6.5: Implication on Decision Assignment� � ��� � � �
�
��� ����� � � � 
�� � � � �

�

� ��� � �

 � ���

� 
 =1 �
�

���
� � =0 �

�
���

� � =1 �
�

���
� � =0 � ��� � � � � � �

Backtrack � � =1 � ��� �

Using the constrained CNF formula
�

shown in Table 6.4, we explain the

implication process on state variables in Table 6.5. After assigning � 
 =1, we apply

this assignment to the unsatisfied clauses containing � 
 , no unit clause results, thus

no implication can be made on other state variables. Next, suppose the ATPG makes

the subsequent decisions � � =0 and � � =1. Applying these to
�

still results in no

implication. The next decision made by the ATPG is � � � �
. For clause � � , we

can directly imply � � =0 (because to satisfy clause ( � � � + � � + � � � )=1, � � has to be 0).
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Consequently, after the direct implication � � =0, clause � � evaluates to 0 because all

literals in � � has evaluated to 0. Therefore, we backtrack to the previous decision

and assign � � =1 and continue the ATPG process.

During the ATPG backtrace, an implication stack is dynamically updated

to record the implication list of earlier backtrace choices similar to [HP98]. We

maintain two dynamic implication lists: � 
���� 
�� � for storing the implications that

are necessary for setting X1=0, and � 
���� � � 
 for storing implications necessary for

setting X2=1. If there is conflict between � 
���� 
�� � and � 
���� � � 
 , then we declare

X slow to rise untestable. A conflict is observed when
� � � � implies

� � � �

( � can be either logic 0 or 1). In other words, a transition is not possible on line

X. Otherwise, we try to generate the test vector V for detecting X2 s-a-0. If V

can incidentally excite X1 s-a-1 in the first time-frame as well, X slow to rise is

detected. Otherwise, we continue to backtrace to excite X1 s-a-1. If not successful,

we declare X slow to rise untestable.

6.5 Experimental Results

We implemented a constrained broadside ATPG based on PODEM [GOE81] in

C++, as well as the implication-based untestable transition fault identification, also

in C++. We further analyzed the effectiveness of our ATPG algorithm by comparing

it with a conventional Broadside ATPG. Experimental data was collected for full-

scan versions of ISCAS89 benchmark circuits on a 2.8GHz Pentium-4 with 512

MB of memory, running the Linux operation system.

First, Table 6.6 reports the functionally untestable transition faults identified

by using our transition fault implication engine (TRANIMP). In order to see the ef-

fectiveness of the implication engine, we list the number of functionally untestable
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Table 6.6: Functionally Untestable Faults Identified by Implication(TRANIMP)
circuit ��� � � � � � 
 ��� � 
 ��� � 
 � � � 
 ���
s344 1040 0 47 66 66

s1423 4288 33 387 387 387
s5378 15680 351 3673 3695 3695
s9234 29086 1327 6533 7415 7415

s13207 44130 1303 8900 14530 14540
s35932 103842 9536 11255 11255 11255

transition faults identified while considering different number of time frames for

sequential circuit. The third column presents the number of untestable transition

faults identified while only one time-frame is considered. The last three columns

show the numbers of functionally untestable transition faults discovered while con-

sidering 3-time-frames, 5-time-frames and 7-time-frames, respectively. For exam-

ple, in circuit s5378, one-time-frame implication found 351 functionally untestable

transition faults. When the number of time-frames increases to 7, the number of

functionally untestable faults identified increased to 7415.

Several interesting issues to note are listed below:

1. In general, the number of functionally untestable transition faults are much

greater than the number of redundant stuck-at faults in the circuit.

2. The number of identified untestable transition faults increases with the num-

ber of time frames considered in the static implication graph.

3. Except for circuit s13207, the number of identified untestable transition fault

saturates when the number of time frames increases to 7. Therefore, we can

expect the number of untestable transition faults to not increase too much

even if the number of time frames continue to increase.

Table 6.7 shows the (lack of) effectiveness of random vectors in avoiding
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Table 6.7: Effectiveness of Random Vectors On Avoiding Functionally Untestable
Faults

� � � ��� � � � � � ��� � � � �  ��� 5000 RandVec Pruned RandVec
��� � � � � ���!� � � � � � �

�
� � � � �

�
� �  �

�
s344 1040 66 19 907 0 906 134

s1423 4288 387 160 2843 0 1163 3125
s5378 15680 3695 1415 9080 0 0 15680
s9234 29086 7415 1590 9875 0 0 29086

s13207 44130 14542 5306 12186 0 0 44130
s35932 103842 11255 1275 87328 0 49758 54084

detection of the functionally untestable transition faults. For each circuit, the total

number of faults is first reported in column 2. Column 3 shows the number of func-

tionally untestable faults identified by our implication engine (TRANIMP), column

4 reports the number of detected functionally untestable faults, and column 5 re-

ports the coverage of the remaining faults. Then we remove those vectors which

detect at least one functionally untestable faults from the test set and rerun the fault

simulation. The results are reported under the Pruned RandVec columns. Obvi-

ously, for the pruned random vector set, it will not detect any identified functionally

untestable faults, as shown in column 6. Columns 7 and 8 list the number of faults

detected and missed by the pruned random vector set, respectively. It is interesting

to see that for some of the circuits (s5378,s9234,s13207), all random vectors detect

at least one functionally untestable fault! Therefore, if we want to reduce the yield

loss by avoiding overtesting of functionally untestable faults, random vectors may

not be very effective.

Table 6.8 reports the results from our constrained ATPG for Broadside test-

ing and we compare it with a conventional non-constraint Broadside ATPG engine.

We target only the faults that random vectors could not detect without inciden-

tally detecting at least some functionally untestable transition faults. The sizes of
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these remaining faults are first listed for each circuit under the second column.

Columns 3 to 6 list the number of detected functionally testable faults, number

of proved functionally untestable faults, number of aborted faults and test gener-

ation time for our constrained Broadside ATPG. The last four columns show the

results when non-constrained ATPG is used. Although the execution time for con-

strained ATPG is longer than the non-constrained version, we significantly improve

the quality of generated test vectors because the new test test only detect those func-

tionally testable faults and avoid detecting of those functionally untestable ones.

In other words, the vectors generated by the non-constrained ATPG detect both

functionally testable and untestable faults. In addition, the constrained ATPG al-

gorithm identified significantly more functionally untestable faults than the non-

constrained ATPG. For example, in circuit s9234, our constrained ATPG identify

8095 functionally untestable faults out of the 29086 remaining potential function-

ally testable faults, while non-constrained ATPG only identify 3357 functionally

untestable faults. Similarly, the number of aborted faults with our proposed method

is also fewer. For instance, only 573 transition faults were aborted as opposed to

1396 transition faults in the non-constrained ATPG.

Table 6.8: Constrained ATPG Vs.Non-constrained ATPG

� �'� �+& � � Constrained ATPG Non-constrained ATPG
� � �-� � �+� � � � ��� � � ��� &	� ��
 � � � � � � ��� � � ��� & � ��


s344 134 60 74 0 0.19 83 51 0 0.13
s1423 3125 2406 476 243 1621.65 2485 368 272 463.73
s5378 15680 10871 4270 539 5393.13 12999 2024 657 669.35
s9234 29086 20418 8095 573 8114.77 24333 3357 1396 2915.27

s13207 44130 21526 22549 55 19871.32 27150 16900 80 3148.62
s35932 54084 39952 14123 9 34754.80 39978 14089 17 6179.21
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6.6 Summary
We presented a novel constrained broadside transition ATPG algorithm. We first

identify the set of illegal (unreachable) states that enable detection of function-

ally untestable faults. Then, by formulating the illegal states as a constrained CNF

formula in our ATPG process, we efficiently generated a higher quality test set

detecting only those functionally testable faults and avoid overtesting of function-

ally untestable ones. The cost for the CNF formula construction is extremely low,

making our formulation very practical. The constrained ATPG allows for earlier

backtrack whenever an illegal state is encountered. In some circuits, significantly

more functionally untestable transition faults have been identified. At the same

time, more faults could be detected without incidental detection of functionally

untestable transition faults. With a test set that reduces launching of transitions that

are functionally impossible, we believe our method offers a practical solution to

avoid overtesting of these functionally impossible transitions, thus reducing yield

loss.
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Chapter 7

On Identifying Functionally

Untestable Transition Faults

7.1 Introduction

Higher clock rate, shrinking geometries, increasing metal density, etc. introduces

various defects that stuck-at test cannot screen out. Therefore, delay fault testing,

which verifies that the CUT operate correctly at desired speed, is becoming a ne-

cessity to maintain the product quality level. However, (non-scan) functional delay

testing can be impractical for larger circuits in that large test sets may be required

to achieve a desirable fault coverage. As a result, at-speed AC scan testing has been

widely used in the industry to detect delay-induced defects. Compared to functional

testing, scan-based testing for delay faults can decrease the overall ATPG complex-

ity and cost, since both controllability and observability on the flip-flops are en-

hanced. But some of the functionally untestable faults which do not impair normal

operation of the circuit may become testable in scan testing [REA01]. This scenario
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is known as overtesting and may result in yield loss [LH03a]. Unfortunately, iden-

tifying the functionally untestable transition faults in large-scale sequential circuit

can be prohibitively expensive, because it is of the same complexity as sequential

ATPG, which is of exponential complexity in terms of the size of the circuit.

Much work [PR94, AC95, PR96, LPR98, RPLB99, WPR01, IA96, ILA96,

PAS01, HSI02, SH03] has been published on identifying untestable and redundant

stuck-at faults in both combinational and sequential circuits in the last decades. In

general, these methods can be classified into two types: fault-oriented methods and

fault-independent methods.

For fault-oriented methods, [AC95] presents two theorems on identifying

untestable faults in sequential circuits. The single-fault theorem states that if a

single fault injected in the last timeframe of a iterative logic array model for the

sequential circuit is untestable, then the fault would be sequentially untestable. The

multi-fault theorem states that an untestable multi-fault in the logic array corre-

sponds to an untestable single fault in the sequential circuits. In [RPLB99], three

new procedures were introduced as an extension to the theorems in [AC95] to help

identify additional undetectable and redundant faults. And [WPR01] uses sensi-

tizability of partial paths to determine redundant faults and incorporate some new

features ( such as blockage learning, dynamic branch ordering and fault grouping)

to identify more redundant single stuck-at faults.

Most of the fault-oriented algorithms mentioned above are ATPG-based,

which spend a lot of computational efforts on identifying untestable faults via ex-

haustive search. To alleviate the problem, approaches that do not rely on traditional

branch-and-bound search algorithm have been proposed. In FIRE [IA96], the au-

thors presented a fault-independent algorithm, which identifies a set of untestable

faults that require conflicting value assignment on a single line for detection in a
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combinational circuit. The idea is extended in FIRES [ILA96] for sequential cir-

cuits, which uses illegal state information as an extra criterion for untestable faults

identification. Then, the authors of [CP96] proposed a generalized FIRES algo-

rithm, which identifies c-cycle redundancies without simplifying assumption and

state transition information. And on top of FIRES algorithm, [HSI02] proposed a

multiple-node implication approach to maximize local conflicting value assignment

for the purpose of untestable faults identification.

For delay faults, several approaches [BI94, LMB97, HPA97, CRP03, SH04]

have been proposed on functionally untestable delay faults identification. In [BI94],

a general delay fault model, which allows the delay faults to persist for many cycles,

is introduced, and algorithms are developed to identify redundancies of arbitrary

size. In [LMB97], a path-independent implication-based approach is proposed for

identifying non-robust untestable path delay faults in combinational circuits. Ad-

ditional general implication-based algorithms are given in [HPA97] on identifying

untestable segment delay faults and robustly untestable, non-robustly untestable

and functionally unsensitizable path delay faults. Most recently, approaches pro-

posed in [CRP03,SH04] combine the implication-based approach and ATPG-based

technique to identify more untestable transition faults in sequential circuits. It has

also been noticed that the size of the transition fault (in terms of clock cycles) has

to be considered for sequential circuits under at-speed testing [CHE93]. The au-

thor in [CHE93] points out that different transition fault sizes will cause different

faulty circuit behavior. However, the number of untestable transition faults de-

creases significantly when the size of the fault increases from one cycle to multiple

cycles [CRP03]. Therefore, we will assume the delay defect size is shorter than one

clock cycle in this chapter.

In this chapter, we present a new approach on identifying functionally untestable
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transition faults in non-scan sequential circuits. The proposed method consists

of two phases: first, a large number of functionally untestable transition faults is

quickly identified by using a fault-independent logic implications implicitly cross-

ing multiple time-frames and classified into three conflict categories. Then, the

technique identifies additional functionally untestable transition faults by finding

the dominated fault sets on the previous identified untestable transition faults. The

experimental results for ISCAS89 sequential benchmark circuits showed that our

approach can identify many more functionally untestable transition faults than the

implication-based method and a ATPG-based method previously reported.

The rest of the chapter is organized as follows. Section 7.2 reviews the

logic implication and fault dominance, which will be used in the rest of chapter.

Section 7.3 describes our proposed two-phase approach for identifying functionally

untestable transition faults in sequential circuits. Section 7.4 gives our experimental

results on ISCAS89 benchmark circuits and compares it with the implication-based

method and another ATPG-based identification approach. Finally, Section 7.5 con-

cludes the chapter.

7.2 Preliminaries

7.2.1 Static Logic Implication

Static logic implication (also called static learning) is a procedure which performs

implications on both value assignment (0 and 1) for each node in the circuit. Since

the effectiveness of implication-based untestable fault identification highly depends

on the completeness of the implications learned, it is critical to have a large set of

implications with each node in the circuit. A number of works have been reported
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on implication computation. In [RK90], a 16-value logic algebra and deduction list

method was proposed to determine necessary node assignments in ATPG. Transitive

closure procedure was used in [CA93] to identify indirect implication on implica-

tion graphs. A more complete implication learning algorithm is based on recursive

learning [KP94], however, the depth of recursion must be kept low to keep the com-

putation time within reasonable bounds. [ZRP97] introduced the extended back-

ward implication to identify additional nontrivial implications. And more recently,

a compact implication graph [ZNP01] has been proposed for sequential circuits,

which spans multiple time-frames without suffering from memory explosion. In

our work, direct, indirect and extended backward implications are used. Although

direct implications can be easily learned, indirect and extended backward implica-

tions require extensive usage of contrapositive and transitive laws. The discovery of

indirect and extended backward implications are nontrivial and can help us in both

ATPG process and untestable fault implications. The following terminology will be

used:

1. � � ��� � ��� : assign logic value v to node a in timeframe t, where � " � � � . When

t=0, [N, v, 0] is also expressed as [N, v].

2. � � ����� � ��� �	��� ��� : assignment to logic value v on node a in the current time

frame (t=0) implies value u assigned to node b in time frame t .

3. impl[a, v, t]: the implication set of assigning logic value v to node a in the

timeframe t.

4. implication graph: a directed graph, where each node corresponds to a circuit

node assignment [node, value], each directed edge denotes an implication and

the weight on the edge represents the relative time-frame associated with the
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implication.

5. transitive law: If � � �	� � � ��� �	��� � 
 � and ��� ��� � � � � � � � � � � , then we also have

� � �	� � � � � � � � � 
 � � � � .

6. contrapositive law: If � � �	� � � � � �	��� ��� ,then ��� �	��� � � � � ����� � ��� .

7. a/v: the stuck-at-v fault on node a.

We will use Figure 7.1 to illustrate the direct implication, indirect implica-

tion and extended backward implication. Without losing generality, we look at the

impl [g,1].

Figure 7.1: Example sequential circuit

1. Direct Implication

By traversing the direct fan-in and fanout of gateG, we can easily find � � � � � �
� � � � � � � � � � � � � � 	�� � � � � � � � � 
 . Similarly, � � � � � � � � � � � . Applying transitive law

to it, the set of direct implications associated with g=1 is:

impl [g,1]=
�
[g,1], [c,0], [e,1], [f,1], [h,1], [i,0]
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2. Indirect Implication

Although [h,1] or [i,0] could not imply anything on node k individually,together,

they will imply [k,1]. This is called an indirect implication, which is learned

through circuit simulation. [k,1] will be added into the implication list for

[g,1], which makes

impl [g,1]=
�
[g,1], [c,0], [e,1], [f,1], [h,1], [i,0], [k,1]




3. Extended Implication

Finally, extended backward implications apply to unjustified gates in the im-

plication list. In our example, gate E will be an unjustified gate, since the

output signal of E is specified as 1 ([e,1]), but none of its input (i.e. a, b) was

specified yet. Thus, E is a candidate for the application of extended backward

implication.

To compute extended implications on gate E, first, one of the unspecified

inputs (node a) is set to logic value 1, we simulate [a,1] together with the

impl[g,1]. And four new implications are found:
�
[d,0], [j,0], [p,0], [q,0,1]



.

Similarly, if we simulate [b,1] together with the impl[g,1], we can have the

new implication
�
[m,0], [n,0], [p,0] [q,0,1]



. Since the new implications [p,0]

and [q,0,1] are common between the learned values during the simulation of
�
[a,1], impl[g,1]



and

�
[b,1], impl[g,1]



, they are added into the implication

list for [g,1]. Therefore, the complete implication for [g,1] is now:

impl [g,1]=
�
[g,1], [c,0], [e,1], [f,1], [h,1], [i,0], [k,1], [p,0], [q,0,1]




These implications are stored in a compact implication graph as shown in

Figure 7.2.
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Figure 7.2: Implication Graph for [g,1]

In the implication graph, each node corresponds to a circuit node assignment

[node, value], each directed edge denotes an implication and the weight on the edge

represents the relative time-frame associated with the implication.

7.2.2 Fault Dominance

The following definition for dominated fault was given in [ABF90]. We will use

the same definition in this chapter.

Definition 1 Let
���

be the set of all tests that detect a fault g. We say that a fault f

dominates the fault g iff f and g are functionally equivalent under
� �

.

Tf

Tg

Figure 7.3: Test set
� �

and
���

Figure 7.3 gives us a graphic illustration of the test sets
� �

and
���

when fault

f dominates another fault g. From the figure, we can see that if f dominates g, then

any test t that detects g will also detect f (
� ��� � �

). Therefore, in ATPG process it
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is unnecessary to consider the dominating fault f, because we automatically obtain

a test that detects f by deriving a test to detect g. Particularly, if fault f and fault g

dominates each other, then we say these two faults are equivalent.

Furthermore, if we look at the Figure 7.3 from a different perspective, we

can observe that if fault f is untestable, then fault g must be untestable as well.

Otherwise, there must be at least one test that can detect both fault g and f.

7.3 Our Approach

In this section, we describe our proposed method that consists of two phases. In

Phase 1, a large number of functionally untestable transition faults is quickly iden-

tified by the fault-independent logic implications across multiple time-frames and

classified into three conflict categories. However, the implication-based algorithm

in Phase 1 may not be complete. Therefore, in Phase 2, additional functionally

untestable transition faults are identified by finding the dominated fault sets on the

previous identified untestable transition faults.

7.3.1 Phase 1: Untestable Transition Fault Identification with

Implication

In Phase 1, the algorithm similar to [IA96, ILA96] is used, which identifies a set

of untestable stuck-at faults that requires conflicting value assignment for detec-

tion in a circuit. However, unlike [IA96, ILA96], where implications did not span

multiple times, our method computes sequential implications quickly without ex-

plicit unrolling of the circuit. In [IA96, ILA96], two sets of faults, � ��� � and � ��� 
 are

computed with respect to a given node � :
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� ���
	 =set of faults that require [ � � � ] as a necessary condition for excitation or

propagation.

Then � ��� � � � ��� 
 is the set of faults that require both [ � � � ] and [ � � � ] simul-

taneously for detection, which must then be untestable.

For transition faults, our transition implication engine computes four sets of

transition faults, � � � � ��� � , � � � � ��� 
 , ��� � � ��� � , and ��� � � ��� � with respect to a given

node � :

� � � � ���
	 = set of transition faults that require [ � � � � 
 � ] as a necessary condi-

tion for initialization.

��� � � ���
	 = set of transition faults that require [ � � � ] as a necessary condition

for launch or propagation.

We further make the following three definitions:

Definition 2 A transition fault � slow-to-rise(slow-to-fall) is said to be sequen-

tially uninitializable if there exists no input sequence
�

such that the targeted line

� could be initialized to logic 0(1) functionally.

Based on Definition 2, all the transition faults belonging to � � � � ��� � � � � � � ��� 

for any given node � would be sequentially uninitializable because they require

both [ � � � � 
 � ] and [ � � � � 
 � ] to set the target node to initial value in the immediate

preceding time frame.

Definition 3 A transition fault � slow-to-rise(slow-to-fall) is said to be sequen-

tially uncapturable if there exists no input sequence
�

such that the stuck-at-

0(stuck-at-1) fault on line � could be sequentially launched and propagated.

Based on Definition 3, all the transition faults belonging to �
� � � ��� � � �
� � � ��� 

for any given node � would be sequentially uncapturable, because they require both

[ � � � ] and [ � � � ] to launch or propagate the target transition fault.
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Definition 4 A transition fault � slow-to-rise(slow-to-fall) is said to be sequen-

tially constrained if the initialization of � in time frame � and capture of fault effect

on � in time frame � �
�

require conflicting value assignments.

Thus, the sequentially constrained transition faults are those that are either

(1) sequentially initializable but uncapturable in the immediate next time frame,

or (2) sequentially capturable but not initializable in the immediate preceding time

frame. Note that these three types of untestable transition faults are mutually exclu-

sive. Therefore, the sequentially constrained transition faults for any given node �

are
� � � � � ��� ��� ��� � � ��� � 	 � � � � � � ��� 
 � �
� � � ��� 
 	 .

Below is the High-level description of the implication-based algorithm used

in Phase 1.

1. Construct sequential implication graph through static learning

2. Using the single-line-conflict and maximizing local conflict algorithms, iden-

tify a set of functionally untestable transition faults, � � .
3. Classify the faults in � � into three categories based on the definitions given

above:

(a) Type1: Sequentially uninitializable transition faults

(b) Type2: Sequentially uncapturable transition faults

(c) Type3: Sequentially constrained transition faults

7.3.2 Phase 2: Dominated Untestable Faults Identification

In Phase 2, we define three types of transition fault dominance relationship and

describe how they help identify additional functionally untestable transition faults

based on those identified untestable faults in Phase 1.
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Definition 5 Let
� � � and

� � � be the sets of all single time-frame vectors (FFs +

PIs) that initialize transition faults g and f, respectively. We say that transition fault

f Initialization-dominates transition fault g iff
� � � � � � � .

Definition 6 Let
� � �

and
� � �

be the sets of all single time-frame vectors that cap-

ture transition faults g and f, respectively. We say that transition fault f Capture-

dominates transition fault g iff
� � � � � � �

.

Definition 7 Let
� � � and

� � � be the sets of all single time-frame vectors that ini-

tialize transition faults g and f, respectively, and let
� � �

and
� � �

be the sets of all

single time-frame vectors that capture transition faults g and f, respectively. We say

that transition fault f Constrain-dominates transition fault g if the following two

conditions are both met:

1.
� � � � � � � .

2.
� � � � � � �

.

We will use the circuit in Figure 7.4 to illustrate the three types of dominance

relationship.

Figure 7.4: segment of sequential circuit

In Table 7.1, we show the test vectors that could initialize the transition

faults in Figure 7.4. From the table, we can see that d slow-to-rise Initialization-

dominates a slow-to-rise, b slow-to-rise and e slow-to-fall. This could be derived
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from the fact that all the vectors, which could initialize a slow-to-rise, b slow-to-

rise or e slow-to-fall could also initialize the d slow-to-rise as well. Similarly we

can have f slow-to-fall initialization-dominates c slow-to-fall.

Table 7.1: Initialization Vectors

Fault Primary Inputs
a b c

a slow-to-rise 0 X X
a slow-to-fall 1 X X
b slow-to-rise X 0 X
b slow-to-fall X 1 X
c slow-to-rise X X 0
c slow-to-fall X X 1
d slow-to-rise 0 X X

X 0 X
d slow-to-fall 1 1 X
e slow-to-rise 1 1 X
e slow-to-fall 0 X X

X 0 X
f slow-to-rise 0 X 0

X 0 0
f slow-to-fall X X 1

1 1 X

In Table 7.2, we show the test vectors that could capture the transition faults

in Figure 7.4. From the table, we can see that d slow-to-rise Capture-dominates

a slow-to-rise, b slow-to-rise and e slow-to-fall. This could be derived from the

fact that all the vectors, which could capture a slow-to-rise, b slow-to-rise or e

slow-to-fall could also capture the d slow-to-rise as well. Similarly, f slow-to-fall

capture-dominates c slow-to-fall and a slow-to-rise capture-dominates d-slow-to-

rise.
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Table 7.2: Capture Vectors

Fault Primary Inputs
a b c

a slow-to-rise 1 1 X
a slow-to-fall 0 1 X
b slow-to-rise 1 1 X
b slow-to-fall 1 0 X
c slow-to-rise 0 0 1
c slow-to-fall 0 0 0
d slow-to-rise 1 1 X
d slow-to-fall 0 X X

X 0 X
e slow-to-rise 0 X X

X 0 X
e slow-to-fall 1 1 X
f slow-to-rise X X 1

1 1 X
f slow-to-fall 0 X 0

X 0 0

The complete initialization dominance relationship and capture dominance

relationship are stored in the two graphs as shown in Figures 7.5 and 7.6. In the

dominance graph, each node corresponds to a transition fault in the circuit, each

directed edge denotes a dominance relationship. If we consider Figures 7.5 and 7.6

together. We have the following observations:

1. d slow-to-rise dominates a slow-to-rise, because both TI and TC for d slow-

to-rise are the superset of TI and TC for a slow-to-rise, respectively.

2. However, a slow-to-rise does NOT dominate d slow-to-rise, because test vec-

tor X0X could initialize d slow-to-rise but not a slow-to-rise.

3. It is notable that d slow-to-rise and e slow-to-fall dominates each other. There-
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Figure 7.5: Initialization Dominance Graph

Figure 7.6: Capture Dominance Graph

fore, they are equivalent transition faults.

The dominated untestable faults identification algorithm used in Phased 2 is

given as follows:

1. Construct the fault-initialization dominance graph (INI DOM) and the fault-

capture dominance graph (CAP DOM).

2. S1=S2=S3=EMPTY

3. for every identified untestable transition faults f in S0:
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(a) case Type1: Search the fault-initialization dominance graph (INI DOM)

to identify dominated untestable faults by f and add them in (S1)

(b) case Type2: Search the fault-capture dominance graph (CAP DOM) to

identify dominated untestable faults by f and add them in (S2)

(c) case Type3:

� � � ��� � = untestable transition faults that are initialization-dominated by

f

� � � ��� 
 = untestable transition faults that are capture-dominated by f

The untestable fault set: S3= ��� � �������
	��
� � �����
	���� 	

4. The final, complete set of functionally untestable transition faults: � � ��� � ��� � ��� � ���

7.4 Experimental Results

The algorithms explained above were implemented in C++. Experimental data are

collected for non-scan ISCAS89 sequential benchmark circuits, on a 2.0GHz Pen-

tium 4 with 512 MB of memory, running the Linux Operating System. The re-

sult of our proposed two-phase procedure on ISCAS 89 benchmark circuits are

reported in Table 7.3, For each circuit, we first give the number of transition faults

in the circuit. Next, we show the number of functionally untestable transition faults

identified in Phase 1. In column 4–7, we report the number of sequentially unini-

tializable transition faults, sequentially uncapturable transition faults, sequentially

constrained transition faults and total number of functionally untestable transition

faults identified by our proposed approach, respectively. Next, column Time reports

the corresponding CPU execution time for Phase 2 procedure.
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From this table, many additional functionally untestable transition faults

have been identified using our approach. For example, in circuit s386, the implication-

only algorithm in Phase 1 identified 195 untestable transition faults, and Phase

2 found 91 additional untestable ones, making a total of 286 faults identified as

untestable, in only 0.02 second extra execution time. The number of additional

functionally untestable transition faults identified in large sequential circuits (ex-

cept for s35932) could be significant. For example, in s38417r, the implication-

based technique found 6434 functionally untestable transition faults, while the pro-

posed method identified totally 7106, which is 672 more, in only 12 seconds. For

s35932, since the implication-based procedure already identified all the function-

ally untestable transition faults, no additional faults could be identified by the new

technique. Overall, the proposed two-phase approach improve the number of iden-

tified functionally untestable transition faults by 5.8% over the implication-based

method in less than 1 minutes totally.

In Table 7.4, we compare our results with the implication-based method

and a ATPG-based approach [CRP03] for some of the large ISCAS89 benchmark

circuits. After the first two columns for circuit name and number of transition

faults in the circuit, we show the number of untestable transition faults identified by

Chen etc. in [CRP03], using a ATPG-based scheme. Then, we give the number of

untestable ones identified by implications only and our new technique, respectively.

In the last column, we show the percentage improvement our approach has over the

ATPG-based method.

For three circuits (S1238, s1488 and s1494) out of the 13 large benchmark

circuits, the ATPG-based method [CRP03] performed better. In all the other cases,

our proposed technique identifies more functionally untestable transition faults than

the other two methods. For example, in circuit s38417r, our technique identi-
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fied 7106 functionally untestable transition faults, which is more than doubling of

3075, the number of untestable transition faults identified in [CRP03]. Overall, our

new approach identified 43% more functionally untestable transition faults than the

ATPG-based method in [CRP03].

7.5 Summary

In this chapter, we present a new approach on identifying functionally untestable

transition faults in non-scan sequential circuits. We formulate a new dominance

relationship for transition faults and use it to help us identify more untestable tran-

sition faults. The proposed technique consists of two phases: first, a large num-

ber of functionally untestable transition faults was identified by using the fault-

independent logic implications implicitly crossing multiple time-frames and classi-

fied into three categories according to the sequential constraint on their initialization

and capture requirement. Then, additional functionally untestable transition faults

were identified by finding the dominated fault sets on the identified untestable tran-

sition faults. The experimental results for ISCAS89 sequential benchmark circuits

showed that the proposed two-phase approach identified 5.8% more functionally

untestable faults than implication-based method and 43% over the ATPG-based ap-

proach previously reported.
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Table 7.3: Experimental Results using Implication & Dominance

CKT #Functional Untestable Faults Identified Time
Name #Faults Phase1 Phase1+Phase2 (s)

#UnInit #UnCap #Constr #Total
s298 812 129 8 8 141 157 0.01
s344 980 66 11 10 52 73 0.01
s386 1078 195 6 16 264 286 0.02
s444 1180 226 6 22 231 259 0.02
s526 1390 345 0 1 400 401 0.03
s641 2078 66 0 0 88 88 0.03
s713 2206 208 40 81 120 241 0.03
s832 2244 96 0 8 131 139 0.03
s953 2516 81 0 0 109 109 0.03

s1196 3232 5 0 0 8 8 0.04
s1238 3254 58 0 50 13 63 0.04
s1423 3992 387 0 33 463 496 0.07
s1488 4196 22 0 0 38 38 0.06
s1494 4196 30 0 11 34 45 0.05
s5378 14964 3695 1090 1002 1742 3834 0.70
s9234 28174 7415 284 1358 6389 8031 3.14

s13207r 41758 14542 2397 1255 11488 15140 18.52
s15850r 49654 16402 416 1190 15741 17347 13.86
s35932 96930 11255 0 9536 1719 11255 3.86
s38417r 116310 6434 376 577 6153 7106 12.09
s38584r 111578 14923 1919 5975 8031 15925 15.17

Sum 492722 76580 6553 21133 53355 81041 52.64
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Table 7.4: Comparison With Previous Work

CKT Func. Unt. faults Improvement
Name #Faults [CRP03] Impl Ours (%)
s953 2516 101 81 109 7.9
s1196 3232 2 5 8 300
s1238 3254 82 58 63 -23.2
s1423 3992 273 387 496 81.7
s1488 4196 241 22 38 -84.2
s1494 4196 262 30 45 -82.8
s5378 14964 1645 3695 3834 133.1
s9234 28174 5600 7415 8031 43.4

s13207r 41758 10637 14542 15140 42.3
s15850r 49654 10259 16402 17347 69.1
s35932 96930 8903 11255 11255 26.4
s38417r 116310 3075 6434 7106 131.1
s38584r 111578 14450 14923 15925 10.2

Sum 480754 55530 75249 79397 43.0
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Chapter 8

Conclusions

In this dissertation, we addressed some of the key problems in delay testing (such

as explosion in test data volume and application time, lower fault coverage, higher

ATPG complexity and overtesting problem in scan-based delay testing) and devel-

oped several novel and efficient ATPG and Design-for-testability (DFT) algorithms

for delay testing.

First, we presented two algorithms, Fault-List-based extension and Priority-

based extension, for composing transition patterns from vectors in a s@ test set.

The priority-based algorithm was shown to be superior to the fault-list based algo-

rithm. It was demonstrated that high quality transition pattern sets can be obtained,

bypassing the need for a native mode transition fault ATPG. Experimental compar-

ison with a native mode transition fault ATPG tool showed the proposed heuristics

resulted in 20% smaller pattern set while achieving the same or higher transition

fault coverage. We discussed the additional advantages of reusing the s@ vectors

in pattern validation, constraint handling and reducing design data in the context of

IP cores.

Secondly, We proposed efficient techniques to reduce test data volume and
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test application time for transition faults. First, we proposed a novel transition test

chain formulation via a weighted transition pattern graph. Only s@ ATPG was

needed to construct the necessary test chains for transition faults. By combining

the proposed transition test chain and ATE repeat capability to reduce the test data

volume by 46.5%, when compared with the conventional approach. The second

technique that replaces the ATE repeat option with Exchange Scan improves both

test data volume and test application time by 46.5%. In addition, we address the

problem of yield loss due to incidental overtesting of functionally untestable tran-

sition faults, By formulating it into a constraint in our weighted pattern graph, we

can efficiently reduce the overtesting ratio. The average reduction on the overtesting

ratio is 4.68%, with a maximum reduction of 14.5%.

Thirdly, a novel scan-based delay test approach, referred as the hybrid delay

scan, has been proposed. The proposed method combines advantages of skewed-

load and broad-side approaches and can achieve higher delay fault coverage than

the broad-side approach. By selecting only a small fraction of the state inputs

as the skewed-load flip-flops, we avoid the costly design requirement in skewed-

load approach due to the fast scan enable signal that must switch in a full system

clock cycle. Our experimental results show that for all the ISCAS 89 Benchmarks,

the transition delay fault coverage achieved by hybrid approach is higher than or

equal to that achieved by broadside load approach, with an average improvement of

4.47%.

Next, we presented a novel constrained broadside transition ATPG algo-

rithm. We first identify the set of illegal (unreachable) states that enable detection

of functionally untestable faults. Then, by formulating the illegal states as a con-

strained CNF formula in our ATPG process, we efficiently generated a higher qual-

ity test set detecting only those functionally testable faults and avoid overtesting
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of functionally untestable ones. The cost for the CNF formula construction is ex-

tremely low, making our formulation very practical. The constrained ATPG allows

for earlier backtrack whenever an illegal state is encountered. In some circuits, sig-

nificantly more functionally untestable transition faults have been identified. At the

same time, more faults could be detected without incidental detection of function-

ally untestable transition faults. With a test set that reduces launching of transitions

that are functionally impossible, we believe our method offers a practical solution

to avoid overtesting of these functionally impossible transitions, thus reducing yield

loss.

Finally, we present a new approach on identifying functionally untestable

transition faults in non-scan sequential circuits. We formulate a new dominance

relationship for transition faults and use it to help us identify more untestable tran-

sition faults. The proposed technique consists of two phases: first, a large num-

ber of functionally untestable transition faults was identified by using the fault-

independent logic implications implicitly crossing multiple time-frames and classi-

fied into three categories according to the sequential constraint on their initialization

and capture requirement. Then, additional functionally untestable transition faults

were identified by finding the dominated fault sets on the identified untestable tran-

sition faults. The experimental results for ISCAS89 sequential benchmark circuits

showed that the proposed two-phase approach identified 5.8% more functionally

untestable faults than implication-based method and 43% over the ATPG-based ap-

proach previously reported.
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