
PathFinder-beta-0.9 4 of 4

PathFinder
(Beta version 0.9)

● Introduction:
athFinder is a tool used to find the all the paths exercised in the circuit, the key idea is that can
we get these paths exercised by the signal without having to simulate the circuit with the given
pattern. PathFinder is a static analysis tool finds all paths in the circuit between any two pin's

in the circuit by default, but we can restrict PathFinder to find all the paths through the circuit lines
which we are interested, this makes PathFinder (referred as PF) flexible to be adapted to any situation
of interest.

P
In this work we describe how we can make use of PF can be used for ATPG (Automatic Test Pattern
Generation) path delay analysis, since in any circuit we have exponential number of paths, modeling
paths using PDF (path delay fault model) does not scale that well for huge designs, we use PF in such
situation to qualify the patterns on size of path the pattern can exercised thus we can prefer patterns
which can test long paths with the patterns. In the next section we describe the implementation details
of the PF.

● Algorithmic Details
The algorithm PF uses is a variation of the standard BFS(Breadth First Search) the only change is that
PF algorithm enumerates all the paths between two nodes in the graph, where as BFS can only find if
the two nodes in the graph are connected or not. The following are some of the definitions before we go
further into the algorithm. We define the path as a sequence of pins (p1,p2,p3....pn) in which a pin pair
(pi , pi+1) when 'i' is odd belong to the same net (N) if 'i' is even then the pin pair (pi , pi+1) belong input
and output pins of a block(B). And we are interested in only such paths in which each of these pins pi

belong to the transition fault list reported by the ATPG. We describe two algorithms ALGO1 and
ALGO2 former is a non-recursive version and the latter is a recursive algorithm.

Problem Definition: Given a sequence of pins (p1,p2,p3....pn) given by the ATPG as transition fault list
for a given pattern report path(s) P1 , P2 Pn (path as defined above) such that each of these paths
begin and end either at a primary input (PI) or memory block or at a primary output (PO).

ALGO1: A very simple algorithm such as a Breadth First traversal of the Graph (Hyper Graph) in
our case the Hyper Graph is a structural verilog netlist, the only change in the BFS algorithm is that we
should expand a node (in this case a pin and sub-circuit connected to that pin) only if the pin is in the
transition fault list reported by the ATPG, thus at the end of the BFS we are left with all the possible
walks in the graph which contain the pins (transition fault list pins) reported by the ATPG report. One
important observation is that we should expand the nodes in the Topological Order , this step is
essential because we don't to miss any paths between two nodes. Below is the ALGO1 briefly
described.

University of Connecticut,Storrs,CT Vamsi Kundeti

PathFinder-beta-0.9 4 of 4

ALGO1:
FindAllPaths(Graph G, Node n1, Node n2){
 List expand_list = List(n1);
 Node n;
 while(expand_list){
 n = RemoveFirstElement(expand_list);
 UpdatePathsToAllIncidentNodes(n,G);
 AppedToListInTopologicalOrder(n,expand_list);
 }
/*At this point n2 contains all the paths from n1 to n2*/
}

You can find the details of the algorithm in the path_algorithm.c file in the PF source code. The
variation of BFS are the functions UpdatePathsToAllIncidentNodes and
AppedToListInTopologicalOrder , for every edge (u,vi) incident on u
UpdatePathsToAllIncidentNodes add's to vi all the computed paths to u with edge (u,vi) appended to
each of these paths, in simple words if there is a edge between (u,v) all the ways to reach v is all the
ways to reach u and for each of these ways add the edge (u,v). Since we don't want to miss any of the
paths we need to be careful on the order of the nodes which we process
AppendToListInTopologicalOder takes care of this issue, see the following example on the need of
Topological Ordering.

 Fig2: Need of Topological Sort

As we can see in the above situation if we are expanding node n during the BFS processing step we can
process n1 or n2 since both are in the same level with respect to n but see the important fact if we
expand n1 first rather than n2 we are going to miss out path through n2 at the end of BFS when we
reach n3. This is exactly Topological Sort comes into our rescue, since out circuit is a DAG (Directed
Acyclic Graph), ordering the nodes topologically forces us to process n2 before n1 this is taken by
AppendToListInTopologicalOrder.

University of Connecticut,Storrs,CT Vamsi Kundeti

n

n1

n2

n3

PathFinder-beta-0.9 4 of 4

ALGO2: Another simple algorithm which saves the space in terms of the intermediate paths we need
to keep track, is a simple recursive algorithm which marks a node and goes into recursion and unmarks
when it comes back of the recursion. Please see path_algorithm.c for more details.

● Architecture of the System

Fig3: Overview of Pathfinder system.

○ Results

University of Connecticut,Storrs,CT Vamsi Kundeti

Verilog
Parser

Netlist Library
file

TMAX
fault list

Path Algorithm

All Paths
(output)

PathFinder-beta-0.9 4 of 4

Design PAT:1 PAT:2 PAT:3 PAT:4 PAT:5 PAT:6 PAT:7 PAT:8 PAT:9
s298 5 5 5 0 4 7 6 5 7
s1196 6 7 10 0 4 7 6 10 10
s9234 10 6 12 14 7 11 10 12 10
s13207 19 14 18 14 11 14 22 9 20
s15850 14 16 11 12 13 14 10 13 9
s38417 22 22 15 17 19 22 22 14 22
s38584 18 19 21 26 17 17 20 22 22

Table 1: longest paths and patterns

University of Connecticut,Storrs,CT Vamsi Kundeti

	PathFinder
	Introduction:
	Algorithmic Details
	Architecture of the System
	Results

