
An Efficient Digital Circuit for Implementing Sequence Alignment

Algorithm
Vamsi Kundeti Yunsi Fei

(vamsik@engr.uconn.edu) (yfei@engr.uconn.edu)
CSE Department ECE Department

University of Connecticut University of Connecticut
Storrs,CT Storrs,CT

Abstract

The problem of Sequence Alignment (Edit Dis-
tance) between a pair of strings has been well stud-
ied in the field of computing algorithms. The classic
dynamic programming-based algorithm, Needleman-
Wunsch (O(n2)), is widely used in practice, especially
applied in the field of Biology. Biologists use this al-
gorithm immensely to find similarities between gene
sequences. Any optimization in the implementation
of this algorithm will have a significant practical im-
pact on Biological research. However, even after several
decades from the time Needleman-Wunsch’s algorithm
was published (in 1970s), not much has been done in
improving the runtime of the algorithm in real imple-
mentations. In view of this, we propose an efficient
hardware implementation of the Sequence Alignment
algorithm to speedup the algorithm runtime. To the
best of our knowledge, this is the first hardware imple-
mentation of the Sequence Alignment algorithm. The
experimental results show that our circuit implemen-
tation can achieve two orders of magintude speedup
compared with the software counterpart, meanwhile re-
ducing the area cost.

1 Introduction

Computing the EditDistance [5] between two strings
is one of the most fundamental problem in computer
science. Algorithms based on edit distance are used
immensely in aligning biological sequences. The stan-
dard dynamic programming-based Needleman-Wunsch
algorithm takes O(n2) time to compute the edit dis-
tance of two strings, S1 = [a1, a2, a3, . . . , an] and S2 =
[b1, b2, b3, . . . , bn], and O(n2) space to compute the ac-
tual edit script (symbolic transformation from S1 to
S2). This algorithm has being widely used in prac-
tice, especially in biological sequence alignment. Any
improvements either in time or space for the compu-
tation of this algorithm will have a significant impact
on the biological research. However, in the last few
decades not much has been done in improving the per-

formance of software implementation of the algorithm.
The asymptotic runtime of the algorithm remains at
O(n2), although there has been some work producing

a O(n2

log(n)) algorithm [4], which has been a purely the-

oretical result and did not find place in real software
implementations. In view of this, we propose a hard-
ware implementation of this fundamental EditDistance
algorithm which could help speeding up all sequence
alignment operations. In this paper, we present an ef-
ficient circuit design for the algorithm. To the best
of our knowledge, our hardware implmentation is the
first one for the dynamic programming-based Sequence
Alignment algorithm.

Sequence Alignment is used extensively by biol-
ogists to identify similarities between genes of dif-
ferent species, with genes being charecterized by
DNA sequence (string of characters), e.g., Sdna =
[c1, c2, c3, . . .], ci ∈ A, T,G,C, where A, T , G, and C

are symbols for amino acids (also called base pairs).
These DNA sequences are very long, typically running
into millions of base pairs. Biologists often analyze
the functionality of newly discovered genes by com-
paring them to genes which were already discovered
and whose function is fully known. Given two DNA
sequences, Snew

dna and Sknown
dna , biologists perform a se-

quence alignment (EditDistance computation) between
the two sequences to find if they have the same func-
tionality. If the EditDistance value is below a threshold
ǫ, both the DNA sequences (genes) have some proper-
ties in common; otherwise they differ. BLAST (Basic
Local Algorithm Search Tool) is the most popular se-
quence alignment tool currently used by biologists [3].
EditDistance algorithm is a fundamental building block
on which the BLAST program is built, and the length
of DNA sequences is a major concern for computation
since the algorithm takes O(n2) time. As the size of
the DNA sequences reach millions of base pairs, com-
puting the EditDistance really suffers in performance.
To overcome this problem, BLAST uses a heuristic
which breaks up the long DNA sequences into smaller
segments and computes the EditDistance between the

1

broken segments and puts these segments together. As
EditDistance computation between a pair of strings is a
fundamental operation on which several families of se-
quence alignment algorithms are built, implementing
this fundamental operation in hardware would speed
up all the computations in software and help in scaling
the software to handle longer DNA sequences in lesser
time. This is the major motivation for our hardware
implementation of EditDistance.

The organization of the paper is as follows. Sec-
tion 2 formally defines the EditDistance problem. In
Section 3, we briefly describe the dynamic program-
ming based software algorithm. We describe our hard-
ware implementation of RTL structures in details in
Section 4. Section 5 presentes the simulation results.
Finally, we draw conclusions in Section 6.

2 Problem Definition

Assume we have two strings, S1 = [a1, a2, a3, . . . , an]
and S2 = [b1, b2, b3, . . . , bm], and a set of operations
{Insert(I),Delete(D), Change(C)}, each of the
operations I,D,C can be applied to the characters
in the strings at a given position. For example, if
S1 = [aaaabcda] and S2 = [aaabcada], applying an
operation D to the string S1 at position 8 (the right-
most character) changes it to [aaaabcd], applying an
operation I(x) to S2 at position 8 inserts a character
x to S2 and changes it to [aaabcadxa], and applying
an operation C(b) to S1 at position 4 which has
a character a makes it [aaabbcda] by changing the
character from a to b. Note that each of the operations
needs the position specified for operation, and I and
C need an additional character for replacement.

The EditDistance problem asks for the minimum
number of operations required to transform string S1

to S2 (or S2 to S1). A more general specification of
the problem associates a cost with each of the op-
erations, and asks for a set of operations with mini-
mum cost which can transform S1 to S2. In this pa-
per, we consider a simplified problem, where each of
these operations (I,D,C) has a unit cost, and hence
minimizing the number of operations is equivalent to
minimizing the cost. We consider the previous ex-
ample with S1 = [aaaabcda], S2 = [aaabcada], and
we can transform S1 to S2 by a sequence of oper-
ations as follows: change character a at position 4,
b at position 5, and c at position 6 of S1 to b, c

and a, respectively, by operations C(b), C(c), and
C(a). We can briefly describe the series of operations
as a transcript T = {−,−,−, C(b), C(c), C(a),−,−},
where − at positions 1, 2, 3, 7, 8 indicates no-operation,
and the 3 operations at positions 4, 5, 6 result in a

cost of 3 units. However, we can also transform S1

to S2 by applying the following transcript T
′

to S1,
T

′

= {−,−,−,D,−,−, I(a),−,−}, where operation
D deletes the character at position 4 of S1, and op-
eration I(a) inserts a character a at position 7 in S1.
T

′

requires only 2 operations whereas T requires 3 op-
erations. The EditDistance problem asks to find the
minimum number of operations which can transform
S1 to S2.

3 Software Algorithm Description

The widely used algorithm for computing the edit
distance of two strings is based on dynamic program-
ing. Algorithm 1 demonstrates the pseudo-code for the
algorithm of EditDistance implemented in software. We
are computing an array of edit distance, D, between
subsets of the two strings, i.e., D(i, j) is the edit dis-
tance from the first i characters of S1 to the first j

charaters of S2, and D(n, n) is the minimum number
of operations to transform S1 to S2. The first step is
initialization, giving the edit distance from NULL to
subsets of S2 (D(0, i) = i), and subsets of S1 to NULL
(D(i, 0) = i). The computation of other array elements
is performed by two loops which compute the value of
D(i, j) (1 ≤ i ≤ n,1 ≤ j ≤ n). It comes from the min-
imum one of three costs: D(i-1,j-1)+change cost for
changing the last character of S1 when the first i − 1
characters of S1 have been successfully transformed to
the first j − 1 characters in S2, D(i,j-1)+insert cost for
inserting the last character when the first i characters
of S1 transformed to the first j − 1 characters of S2

, and D(i-1,j)+delete cost for deleting ith character of
S1 when the first i−1 characters of S1 have been trans-
formed to the first j characters of S2. Note that the
insert cost and delete cost are both constant unit cost,
and the change cost is conditionally determined by the
last characters of the two strings - only when they are
different, there is need for a change operation.

4 Hardware Implementation of the Ed-

itDistance Algorithm

In this section, we describe our efficient hardware
implementation of the EditDistance algorithm.

For the core computation of D(i, j) by two loops,
the table Dn×n is filled up row by row. Let D(i, ∗)
represent the ith row in the table D. To fill up this
row, we need the row of D(i− 1, ∗) at any stage of the
algorithm. Thus, a straight forward implementation
may save the entire row D(i − 1, ∗) into a register
R1 of size n, then use another register R2 of size n

to compute D(i, ∗). Once we are done with the ith

row, we copy the contents of R2 to R1 and continue

2

INPUT : Strings S1 and S2 each of size n

OUTPUT: Minimum number of operations to
transform S1 to S2

/*Initialization*/
for i = 1 to n do

D(0, i) = i ;
D(i, 0) = i ;

end

/*Recursive Computation of the Distance Table
D*/
for i = 1 to n do

for j = 1 to n do
change cost = 0;
if S1[i] 6= S2[j] then

change cost = 1;
end

D(i, j) = MIN(D(i − 1, j − 1) +
change cost,D(i, j − 1) + 1,D(i− 1, j) + 1)
;

end

end

return D(n, n) ;

Algorithm 1: Pseudo-code for the algorithm of
EditDistance

computation until the final row of D (i.e., D(n, ∗)) is
obtained. This method would require space of 2 ∗ n

in addition to the initialization space of 2 ∗ n + 1 for
D(0, ∗) and D(∗, 0), and also it is too complex to
synthesize into hardware.

One major contribution of this paper is to propose
an efficient synthesizable design, which requires only
a space of n + 2 to compute the row D(i, ∗) from the
row D(i − 1, ∗) at any stage of the algorithm. Our de-
sign is hierarchical and the top level block diagram is
shown in Figure 1. The circuit is sequential and con-
sists of four major blocks ComputeBlock, AlgoShifter,
CounterBlock, and StringRegister. In the next several
sections we describe the functionality of each of these
blocks.

4.1 Design Block AlgoShifter

The block AlgoShifter is the core block in which all
the rows D(i, ∗) are computed efficiently during the al-
gorithm with only a space of n + 2. Given two strings
of length n, the maximum edit distance (cost of align-
ment) between them would be at most n. Hence, we
need log(n) bits to represent the edit distance at any
stage of the algorithm, and a row of size n + 1, i.e.,
D(i, j), 0 ≤ j ≤ n, would need (n + 1)log(n) bits (flip-
flops) to represent. Figure 2 illustrates the internal

1,S2)

1 S2INPUT: S

clk

reset

out1

out2
out3

shift_input

Si[i]

S2[j]

index_i

index_j

StringRegister StringRegister

CounterBlock

AlgoShifter

ComputeBlock

OUTPUT:
EditDistance(S

Figure 1. Top­level block diagram of the cir­
cuit

details of the AlgoShifter block. It contains a shift reg-
ister of size n + 2, S, which has (n + 2)log(n) bits in
total. Let S[i] denote the ith element that is log(n)
bits starting from position ilog(n), S[0] represent the
first element, and S[n + 1] the last. The block has two
control input signals, clk and reset, two log(n)-bit data
inputs, shift input and reset input, and three log(n)-bit
data outputs, out1, out2, and out3, which represent the
contents of shift register S at S[0], S[1], and S[n + 1].

ShiftRegister(S)

reset

shift_input reset_input

log(n) bits

size = n+1

out1 out2 out3

clk

Figure 2. Internal details of block AlgoShifter

The block AlgoShifter performs the following func-
tions. At every positive edge of the clock control signal
(clk), an input between shift input and reset input is
chosen by the multiplexer and the control signal reset
to feed the left shifter (shift length is log(n)). The out-
puts, out1, out2 and out3, are the values of the first,
second and last elements of the shift register S, which
are used by the ComputeBlock block, as shown in Fig-
ure 1.

We next examine how this shift register is used in

3

implementing Algorithm 1. We take the example in
which row D(1, ∗) needs to be filled up from D(0, ∗).
The contents of D(0, ∗) = [0, 1, 2, . . . , n], and we need
to compute D(1, j) (1 ≤ j ≤ n) one by one. We
first check how D(1, 1) is computed. Three inputs are
needed for the MIN function in the code of Algo-
rithm 1, which in this case are D(0, 0), D(0, 1), and
D(1, 0). We have known D(0, ∗) and D(1, 0) = 1
from the initialization. We assume that the first n

elements of the shift register, S[0], S[1], . . . , S[n], are
filled with contents from row D(0, ∗); and S[n + 1]
contains D(1, 0). With this configuration, the values
of D(0, 0), D(0, 1), and D(1, 0) are available at S[0],
S[1], and S[n + 1] to be used to compute the value
of D(1, 1). Once D(1, 1) has been computed (say,
with a value of X1), the block proceeds to compute
D(1, 2), which needs D(0, 1), D(0, 2) and D(1, 1) at
this stage. It is clear that for further computation of
D(1, j) (j > 2), the value of D(0, 0) is not needed any
more. Thus, after each computation, we shift out the
value in the shifter register which is not necessary for
further computation (e.g., D(0, 0) - S[0] in this case),
and shift in the value just computed which will be
needed by further computations (e.g., D(1, 1)). In the
above example, the initial content of the shift regis-
ter is S = [0, 1, 2, . . . , n, 1]. After D(1, 1) is computed
(with a value X1) and a shift operation performed, S

becomes [1, 2, . . . , n, 1,X1]. After another step, S =
[2, 3, . . . , n, 1,X1,X2], where X2 is the computed value
of D(1, 2). With n steps of computation and shift-
ing, S = [n,X1, . . . ,Xn], where (X1,X2,X3, . . . ,Xn)
corresponds to (D(1, 1),D(1, 2),D(1, 3), . . . ,D(1, n)).
Hence, in this example, we have computed D(1, ∗) from
D(0, ∗). We apply the same method iteratively and are
able to compute all the rows in D.

Next, we further generalize the usage of the
block. Assume that the shift register(S) con-
tains a row D(i, ∗) with the configuration of S =
[D(i, 0),D(i, 1),D(i, 2), . . . ,D(i, n),D(i+1, 0)], after n

shift operations along with computations of D(i+1, k)
(k ≥ 1) as described above, the content of the shift reg-
ister becomes S = [D(i, n),D(i+1, 0),D(i+1, 1),D(i+
1, 2), . . . ,D(i+1, n)]. Before the next row of D(i+2, ∗)
is computed, one more shift operation is needed. With
D(i+2, 0) shifted in and D(i, n) out, the three outputs
of S[0], S[1], and S[n+1] provide the values needed to
compute D(i + 2, 1), i.e., D(i + 1, 0), D(i + 1, 1), and
D(i+2, 0). Since D(i+2, 0) is from the initialization in
stead of on-the-fly computation, a control signal reset
needs to be set. When reset is not set, a normal shift
happens at every positive edge of clk to shift in the
newly computed D[i, j] value. Note that the control
signal of reset is set every n steps by a CounterBlock,

which we describe in the next few sections. Figure 3
shows the operation of the shifter in one clock cycle.

4.2 Design Block ComputeBlock

At each algorithm stage, the block ComputeBlock

is to compute the value of D(i, j) based on three
values, D(i − 1, j − 1),D(i − 1, j), and D(i, j − 1),
which are obtained from the AlgoShifter block outputs
out1, out2, and out3. In addition tothe inputs of D,
the ComputBlock needs the characters in the strings
at positions i of S1 and j of S2 (provided by two
StringRegister blocks) to determine the change cost.
Figure 4 shows the internal details of ComputeBlock.
The block is realized by using a XOR gate for the
computation of change cost, two adders for the op-
eration costs for different cases, and two instances of
2−MIN Comparator which compares two inputs and
outputs the minimum one.

XOR

S1[i]
S2[j]

Adder

Comparator
2−MIN

1

Comparator
2−MIN

shift_input

out1

out2 out3

Adder

Figure 4. Internal details of ComputeBlock

4.3 Design Block StringRegister

At each computation stage, ComputeBlock requires
two characters at positions i and j in the two strings
S1 and S2. The StringRegister block is to take an index
as input and outputs the character at the correspond-
ing position in the string. This block can be realized
using a N-1 multiplexer with index as the control in-
put and characters in the string as the data inputs, as
shown in Figure 5. The mux control input, index, is
generated from the control block CounterBlock, which
we will explain next.

4.4 Design Block CounterBlock

CounterBlock is the block which generates the con-
trol signals of reset and index (index i for S1 and index j
for S2), and reset input to the AlgoShifter block. Fig-
ure 6 shows the internal details of the CounterBlock.
We implement two counters of log(n) bits, C1 and C2,

4

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
����������� ��������

��������
��������

��������
��������
��������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��������
��������
��������

��������
��������
��������

�����������
�����������
�����������

�����������
�����������
�����������

dc aaaaa b

0 1 2 3 4 5 6 7 8

a

c

a

b

a

d
a

0 1 2 3 4 5 6 7 8
1 0 1 2 3 4 5 6 7
2 1 0 1 2 3 4 5 6
3 2 1 1 1 2 3 4 5
4 3 2 2 2 1 2 3 4
5 4 3 2 3 2 2 2 3
6 5 4 3 3 3 2 3 3
7 6 5 4 4 4 3 2 3
8 7 6 5 5 5 4 3 2

dc aaaaa b

a
a

c

a

b

a

d
a

0 1 2 3 4 5 6 7 8
1 0 1 2 3 4 5 6 7
2 1 0 1 2 3 4 5 6
3 2 1 1 1 2 3 4 5
4 3 2 2 2 1 2 3 4
5 4 3 2 3 2 2 2 3
6 5 4 3 3 3 2 3 3
7 6 5 4 4 4 3 2 3
8 7 6 5 5 5 4 3 2

dc aaaaa b

a
a

c

a

b

a

d
a

a
1 0 1 2 3 4 5 6 7
2 1 0 1 2 3 4 5 6
3 2 1 1 1 2 3 4 5
4 3 2 2 2 1 2 3 4
5 4 3 2 3 2 2 2 3
6 5 4 3 3 3 2 3 3
7 6 5 4 4 4 3 2 3
8 7 6 5 5 5 4 3 2

Input to ComputeBlock (1,2,0,a,a)
�
�
�
�

��
��
��
��

Initialial values in the shifter (S)

Values in D yet to be computed Output of ComputeBlock shifting into (S)

Values from previous stage still in (S)

Input to ComputeBlock (0,1,1,a,a)
Redundant value shifted out from (S)

Values in (S) to be used in next stage

Discarded value

�
�
�

�
�
�

Figure 3. Operation of the shifter in first clock cycle

S (INPUT String)

index

S[index]

Multiplexer
8n−bit

8−bits

log(n)−bits

Figure 5. Internal Details of StringRegister

where counter C1 is incremented on every positive edge
of the clock with the maximum value of n, and C2 is
incremented whenever C1 = 0, meanwhile, the reset
signal is set as well. The outputs of C1 and C2 are for
index i and index j respecitvely. When reset is set, the
reset input is given by D(index i, 0).

index(i)

mod(n+1) counter

clk

0 1

reset

index(j)

Accumulator

clk

index_j

index_i

Figure 6. Internal details of CounterBlock

5 Verification and Experiments

The circuit design was implemented in Verilog and
was verified using Synopsys VCS (Verilog Compiler
Simulator) [2]. The complete RTL code of this de-
sign can be downloaded from the author’s webpage [1].
After functionality verification, we used Cadence En-
counter RTL compiler (rc) to synthesize the design
with a TSMC 0.13um (CL013GFSG, fast.lib) standard
cell library. Table1 illustrates the area and switching
power with different settings of clock period (T). All
our timing experiments were performed by setting in-
put delay for all ports (except clock) to 200ps and out-
put delay to 400ps. As the timing constraint becomes
more stringent, both the area cost and dynamic power
consumption are increasing. The maximum frequency
of the hardware implementation is 1 GHz.

5.1 Speedup Estimation with Hardware Imple­
mentation

In this section, we will estimate the possible speedup
in the computation with a hardware implementation
of the algorithm. Without lossing generality, let S1,
S2 be the input strings for which we need to compute
the EditDistance, |S1| = |S2| = n. M1 is a standard
machine which does not provide any hardware imple-
mentation of the EditDistance algorithm, and M2 is a
machine which provides a t × 8-bit hardware imple-
mentation of EditDistance algorithm. Since the in-
put to the EditDistance problem are strings of arbi-
trary lengths we cannot afford to build hardware for
such arbitrary lengths and hence we have to restrict
for only certain fixed t× 8-bit implementation in hard-
ware. The Algorithm1 has to be modified such that
it can use the t-bit hardware implementation available

5

Timing, Area, Power
Clock Period(ps) Slack(ps) #of gates Area Switching Power(nW)

2600 +591 402 6551.939 2483438.371
2000 +226 408 6580.787 3166404.936
1500 +3 431 6694.529 4148261.518
1000 +0 460 7500.792 7076101.428

Table 1. Comparision of various design metrics with Clock Period(T)

Table comparing cycles required
Length of String cycles on M1 M2,t = 8 M2,t = 16 M2,t = 32

1024 150994944.00 30923764.53 20615843.02 10307921.51
2048 352321536.00 113387136.61 103079215.10 77309411.33
4096 1333788672.00 438086664.19 422624781.93 402008938.91
6144 3019898880.00 1108101562.37 1072023837.08 1041100072.55
8192 5184159744.00 1721422892.24 1597727834.11 1546188226.56
10240 8053063680.00 2602750181.38 2370821947.39 2293512536.06
14336 15728640000.00 4690104287.23 4303557230.59 4200478015.49
16384 38956695552.00 5592047419.39 5102421147.65 4870492913.66

Table 2. Estimated cycles required with various hardware implementations

on M2. On machine M1, the asymptotic runtime of
Algorithm1 is O(n2), since Algorithm1 has to fill up
the dynamic programming table (Dn×n) element by
element (D(i, j)). However, on machine M2 which has
a t× 8-bit EditDistance implementation we can fill up
a dynamic programming table D′

t×t in one hardware
instruction(which takes O(t2) cycles). Algorithm 1 has
to be modified to compute the table Dn×n block by
block (D′

t×t) rather than element by element, with the

size of each block t2, we will only have n2

t2
blocks, so the

outer two loops in the modified algorithm only run n2

t2

times in contrast to n2 times on machine M1, this is an
advantage on the M2 because the software overhead(in
maintaining the loops etc.) is now reduced by a factor
of 1

t2
.

We currently estimate the clock cycles required on ma-
chine M2 with a t×8-bit EditDistance implementation
as follows, we approximate the overhead of the software
in the EditDistance to be proportional to number of cy-
cles required, let Tsoft be the clock cycles required on

machine M1 then Tsoft = Kn2 = (k1 ∗
n2

t2
)∗ (k2 ∗ t2) for

constants K, k1, k2, from our design number of clock
cycles to compute t-bit EditDistance is t2 , the fac-

tor (k1 ∗ n2

t2
) in Tsoft can be thought of contributed

by the two outermost for loops running from 1 to n

in the increments of t(i.e {i = 1; i <= n; i+ = t}),
from the preceeding discussion the modified algorithm
which uses t× 8-bit implementation also have the sim-
ilar loop structure, so the number of clock cycles on

M2 would be Thard = (k1 ∗ n2

t2
) ∗ (t2) and finally

speedup =
Tsoft

Thard
= k2. We determined Thard empir-

ically finding out how much time the software takes
to execute the two outer most forloops ({i = 1; i <=
n; i+ = t},{j = 1; j <= n; j+ = t} lets call this Tn2

t2

and Thard = (Tn2

t2

)∗(t2

clockperiod
). The Table2 illustrates

the number of clock cycles required with t = 8, 16, 32,
all the experiments have been performed on 2.4GHz
pentium machine.

6 Conclusions

In this paper we have given a efficient synthe-
sizable Design for implementing the Sequence Align-
ment(EditDistace) algorithm in hardware, which could
speedup the computation of EditDistance.

References

[1] Circuit Design for EditDistance. [Suppressed for paper
blind review.].

[2] Synopsys Design and Simulation Tools.
[http://www.synopsys.com].

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman. Basic local alignment search tool. J.

Mol. Biol., 215:403–410, 1990.
[4] V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev.

On economic construction of the transitive closure of
a directred graph. In Dokl. Acad. Nauk SSSR., pages
487–88, 1970.

[5] C. T. H., L. C. E., R. R. L., and S. Clifford. Introduc-

tion to Algorithms, Second Edition. The MIT Press,
September 2001.

6

